Neural Network Based Prediction Model for Job Applicants

2019 ◽  
Vol 16 (9) ◽  
pp. 3867-3873
Author(s):  
Sourav Thakial ◽  
Bhavna Arora

Predictive analytics, a division of the advanced analytics that uses various techniques like machine learning, data mining and so on, to predict the future events. Predictive analytics is summarized with the data collection, modelling, statistics and deployment. It can be used to predict the future possibilities in different areas like business, healthcare, telecom, finance. An effective technique for prediction is Artificial Neural Network. The model accuracy for prediction can be enhanced using neural networks. The model can also be used easily for prediction of output parameters because of its ability to solve the complex computation which are difficult to be solved by other techniques. In this paper, a brief review of Artificial Neural Network used for prediction analysis is presented with various techniques like Multi-Layer Perceptron, T-S Fuzzy Neural Networks, Support Vector Machine, Radial Basis Function Network, Levenberg-Marquardt Algorithm and Back Propagation and their applications are also presented. This paper also presents the neural network-based prediction model for job applicants which is used to predict the jobs of various applicants based on certain parameter ratings.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuqi Wang ◽  
Liangxu Wang ◽  
Yanli Sun ◽  
Miao Wu ◽  
Yingjie Ma ◽  
...  

Abstract Background Osteoporosis is a gradually recognized health problem with risks related to disease history and living habits. This study aims to establish the optimal prediction model by comparing the performance of four prediction models that incorporated disease history and living habits in predicting the risk of Osteoporosis in Chongqing adults. Methods We conduct a cross-sectional survey with convenience sampling in this study. We use a questionnaire From January 2019 to December 2019 to collect data on disease history and adults’ living habits who got dual-energy X-ray absorptiometry. We established the prediction models of osteoporosis in three steps. Firstly, we performed feature selection to identify risk factors related to osteoporosis. Secondly, the qualified participants were randomly divided into a training set and a test set in the ratio of 7:3. Then the prediction models of osteoporosis were established based on Artificial Neural Network (ANN), Deep Belief Network (DBN), Support Vector Machine (SVM) and combinatorial heuristic method (Genetic Algorithm - Decision Tree (GA-DT)). Finally, we compared the prediction models’ performance through accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) to select the optimal prediction model. Results The univariate logistic model found that taking calcium tablet (odds ratio [OR] = 0.431), SBP (OR = 1.010), fracture (OR = 1.796), coronary heart disease (OR = 4.299), drinking alcohol (OR = 1.835), physical exercise (OR = 0.747) and other factors were related to the risk of osteoporosis. The AUCs of the training set and test set of the prediction models based on ANN, DBN, SVM and GA-DT were 0.901, 0.762; 0.622, 0.618; 0.698, 0.627; 0.744, 0.724, respectively. After evaluating four prediction models’ performance, we selected a three-layer back propagation neural network (BPNN) with 18, 4, and 1 neuron in the input layer, hidden and output layers respectively, as the optimal prediction model. When the probability was greater than 0.330, osteoporosis would occur. Conclusions Compared with DBN, SVM and GA-DT, the established ANN model had the best prediction ability and can be used to predict the risk of osteoporosis in physical examination of the Chongqing population. The model needs to be further improved through large sample research.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 500
Author(s):  
László Keresztes ◽  
Evelin Szögi ◽  
Bálint Varga ◽  
Viktor Farkas ◽  
András Perczel ◽  
...  

The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


2020 ◽  
pp. 002029402096482
Author(s):  
Sulaiman Khan ◽  
Abdul Hafeez ◽  
Hazrat Ali ◽  
Shah Nazir ◽  
Anwar Hussain

This paper presents an efficient OCR system for the recognition of offline Pashto isolated characters. The lack of an appropriate dataset makes it challenging to match against a reference and perform recognition. This research work addresses this problem by developing a medium-size database that comprises 4488 samples of handwritten Pashto character; that can be further used for experimental purposes. In the proposed OCR system the recognition task is performed using convolution neural network. The performance analysis of the proposed OCR system is validated by comparing its results with artificial neural network and support vector machine based on zoning feature extraction technique. The results of the proposed experiments shows an accuracy of 56% for the support vector machine, 78% for artificial neural network, and 80.7% for the proposed OCR system. The high recognition rate shows that the OCR system based on convolution neural network performs best among the used techniques.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


Sign in / Sign up

Export Citation Format

Share Document