Performance Evaluation and Analysis of the Existing Data Aggregation Routing Schemes in Wireless Sensor Network

2019 ◽  
Vol 16 (9) ◽  
pp. 4034-4043
Author(s):  
Rani Poonam ◽  
Sharma Avinash

Wireless Sensor Network (WSN) is an emerging area in past few decades. Through the integration of low cost sensor nodes with Internet of Things (IoT), lots of applications are common now these days. Each application senses and transmits the fused data to the sink. This wireless data transmission is called routing and is the main governing factor for the span of the sensor network. This paper analyzes and presents different variety of routing techniques based on connectivity structure of the sensors. The type of application for which sensor nodes are used governs selection of a routing technique.

2016 ◽  
Vol 12 (10) ◽  
pp. 86 ◽  
Author(s):  
Jingyi Bo ◽  
Yubin Wang ◽  
Na Xu

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; -ms-layout-grid-mode: line; mso-fareast-font-family: SimSun; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">Combining the characteristics of wireless sensor network, the ant colony algorithm is applied to a wireless sensor network, and a wireless sensor network route algorithm based on energy equilibrium is proposed in this paper. This algorithm takes the energy factor into the consideration of selection of route based on probability and enhanced calculation of information so as to find out the optimal route from the source node to the target node with low cost and balanced energy, and it prolongs the life cycle of the whole network</span><span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: SimSun; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">.</span>


Author(s):  
Ronghua Yu ◽  
Qixin Zhou ◽  
Yechun Wang ◽  
Chao You

Researchers have been focused on the influences of flowing fluid on the corrosion of bare metals, but there is little emphasis on the degradation of metal-protective coating. Evaluating the metal-protective coating usually uses the Electrochemical Impedance Spectroscopy (EIS) method. EIS is a technique used for evaluating coating permeability or barrier performance based on the electrical impedance of coating. This paper presents a new impedance-based wireless sensor network for metal-protective coating evaluation. This wireless sensor network consists of two parts: impedance-based wireless sensor nodes and a wireless data base that are equipped with a network analyzer (AD5933) and a RF transceiver (CC1111/CC1110). In the experiment, there are three coating panels immersed in flowing deionized water (DI water) and one coating panel immersed in stationary DI water. Experimental results demonstrate that the proposed wireless sensor network is capable to evaluate the coating degrading.


The emergence of sensor networks as one of the dominant technology trends in the coming decades has posed numerous unique challenges on their security to researchers. These networks are likely to be composed of thousands of tiny sensor nodes, which are low-cost devices equipped with limited memory, processing, radio, and in many cases, without access to renewable energy resources. While the set of challenges in sensor networks are diverse, we focus on security of Wireless Sensor Network in this paper. First, we propose some of the security goal for Wireless Sensor Network. To perform any task in WSN, the goal is to ensure the best possible utilization of sensor resources so that the network could be kept functional as long as possible. In contrast to this crucial objective of sensor network management, a Denial of Service (DoS) attack targets to degrade the efficient use of network resources and disrupts the essential services in the network. DoS attack could be considered as one of th


2015 ◽  
Vol 22 (2) ◽  
pp. 221-228
Author(s):  
Marek Wójcikowski

Abstract In this paper a prototype framework for simulation of wireless sensor network and its protocols are presented. The framework simulates operation of a sensor network with data transmission, which enables simultaneous development of the sensor network software, its hardware and the protocols for wireless data transmission. An advantage of using the framework is converging simulation with the real software. Instead of creating a model of the sensor network node, the same software is used in real sensor network nodes and in the simulation framework. Operation of the framework is illustrated with examples of simulations of selected transactions in the sensor network.


Author(s):  
Ronghua Yu ◽  
Qixin Zhou ◽  
Yechun Wang ◽  
Chao You

Researchers have been focused on the influences of flowing fluid on the corrosion of bare metals, but there is little emphasis on the degradation of metal-protective coating. Evaluating the metal-protective coating usually uses the Electrochemical Impedance Spectroscopy (EIS) method. EIS is a technique used for evaluating coating permeability or barrier performance based on the electrical impedance of coating. This paper presents a new impedance-based wireless sensor network for metal-protective coating evaluation. This wireless sensor network consists of two parts: impedance-based wireless sensor nodes and a wireless data base that are equipped with a network analyzer (AD5933) and a RF transceiver (CC1111/CC1110). In the experiment, there are three coating panels immersed in flowing deionized water (DI water) and one coating panel immersed in stationary DI water. Experimental results demonstrate that the proposed wireless sensor network is capable to evaluate the coating degrading.


Author(s):  
Priyanka Ranaware ◽  
N.D. Dhoot

<p class="Default">This paper proposes a novel industrial wireless sensor network for industrial machine condition monitoring. To avoid unexpected equipment failures and obtain higher accuracy in diagnostic and prognostic for the health condition of a motor, efficient and comprehensive data collecting, monitoring, and control play an important role to improve the system more reliable and effective. A novel wireless data collection for health monitoring system of electric machine based on wireless sensor network is proposed and developed in this paper. The unique characteristics of ZigBee networks such as low power, low cost, and high flexibility make them ideal for this application. The proposed system consists of wireless sensor nodes which are organized into a monitoring network by ZigBee protocols. A base station and wireless nodes have been developed to form a prototype system. Various sensors have the capability to monitor physiological as well as environmental conditions. Therefore proposed system provides a flexible solution that makes our living spaces more intelligent.</p>


2011 ◽  
Vol 403-408 ◽  
pp. 2776-2779
Author(s):  
Li Wei ◽  
Chen Guang Zhao

A system of wireless sensor network(WSN) based on laser rangefinder is studied, which adopts low power consumption ZigBee chip and SimpliciTI network protocol. 8 laser rangefinders are used to collecy the distance of the test points. The collection data is sent to upper computer by wireless data transmission module. It is rapid and real time to monitor the test point. The system can be installed in complex test environment to perform the monitor of all kinds of architecture structure. It dispenses with long time power supply and the user interface is friendly and has abundance function.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 93 ◽  
Author(s):  
Santosh Anand ◽  
Akarsha RR

Energy utilization is an important aspect in any Wireless Sensor Network .The data transmission from various components connected over real-time networks consumes more energy in Wireless Sensor Network. Mainly the task of any network engineer lies in performing an energy efficient, so to reserve the nonrenewable energy supply to sensor nodes. The research convey out effective utilization of energy in wireless sensor networks. It is important to comprise long-term and low-cost monitoring in different WSN application. The network algorithms separated mainly in two parts, first to generate multiple paths and second to switch paths from generated list of paths .Which is implemented as multi-hop-communication so that the battery life of the sensor node may live for long term and low cost of monitoring, which achieve the high lifetime of WSN. 


2018 ◽  
Vol 7 (S1) ◽  
pp. 50-53
Author(s):  
K. Madhumathi . ◽  
T. Suresh .

Wireless Sensor Network consists of large number of autonomous, small, low cost sensor nodes that are spatially distributed in areas of investigation like disaster management, Military, environmental monitoring etc. The main purpose of using those nodes is to collect information from source and process it in destination. But the data received in the destination are useless unless the exact location of source is not known. The task of finding physical coordinates of these sensor nodes in WSNs area is known as localization. One solution for the above problem is manual configuration of sensor but it is unfeasible if the area of deployment is large or inaccessible. Therefore, we use localization techniques which help to capture the location of nodes in wireless sensor network. This study analyses localization algorithms with their pros and cons.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Piyush Kumar Shukla ◽  
Sachin Goyal ◽  
Rajesh Wadhvani ◽  
M. A. Rizvi ◽  
Poonam Sharma ◽  
...  

Wireless sensor network consists of hundreds or thousands of low cost, low power, and self-organizing tiny sensor nodes that are deployed within the sensor network. Sensor network is susceptible to physical attacks due to deprived power and restricted resource capability and is exposed to external environment for transmitting and receiving data. Node capture attack is one of the most menacing attack in the wireless sensor network and may be physically captured by an adversary for extracting confidential information regarding cryptographic keys, node’s unique id, and so forth, from its memory to eliminate the confidentiality and integrity of the wireless links. Node capture attack suffers from severe security breach and tremendous network cost. We propose an empirically designed multiple objectives node capture attack algorithm based on optimization functions as an effective solution against the attacking efficiency of node capture attack. Finding robust assailant optimization-particle swarm optimization and genetic algorithm (FiRAO-PG) consists of multiple objectives: maximum node participation, maximum key participation, and minimum resource expenditure to find optimal nodes using PSO and GA. It will leverage a comprehensive tool to destroy maximum portion of the network realizing cost-effectiveness and higher attacking efficiency. The simulation results manifest that FiRAO-PG can provide higher fraction of compromised traffic than matrix algorithm (MA) so the attacking efficiency of FiRAO-PG is higher.


Sign in / Sign up

Export Citation Format

Share Document