scholarly journals A Protocol for The Effective Utilization of Energy in Wireless Sensor Network

2018 ◽  
Vol 7 (3.3) ◽  
pp. 93 ◽  
Author(s):  
Santosh Anand ◽  
Akarsha RR

Energy utilization is an important aspect in any Wireless Sensor Network .The data transmission from various components connected over real-time networks consumes more energy in Wireless Sensor Network. Mainly the task of any network engineer lies in performing an energy efficient, so to reserve the nonrenewable energy supply to sensor nodes. The research convey out effective utilization of energy in wireless sensor networks. It is important to comprise long-term and low-cost monitoring in different WSN application. The network algorithms separated mainly in two parts, first to generate multiple paths and second to switch paths from generated list of paths .Which is implemented as multi-hop-communication so that the battery life of the sensor node may live for long term and low cost of monitoring, which achieve the high lifetime of WSN. 

Advanced Technologies such as Internet of Things, Machine Networking give rise to the deployment of autonomous Wireless Sensor Nodes. They are used for various domains namely battlefield monitoring, enemy detection and monitoring the environment change. These Wireless Sensor Nodes have the properties of low cost and high battery life. NL (Network Lifetime) is an important phase of Wireless Sensor Network (WSNs), in which the nodes can maintain sensing for a more amount of time. NL can be improved by use of multiple techniques namely Opportunistic Transmission, Scheduling of Timed Data Packets, Clustering of Nodes, Energy Harvesting and Connectivity. This paper provides the energy consumption computation, life time ratio definition and the overview of NL improvement techniques. The paper also presents brief review of the Destination based and Source based routing algorithm


Wireless sensor network plays prominently in various applications of the emerging advanced wireless technology such as smart homes, Commercial, defence sector and modern agriculture for effective communication. There are many issues and challenges involved during the communication process. Energy conservation is the major challenging matter and fascinates issue among the researchers. The reason for that, Wireless sensor network has ‘n’ number of sensor nodes to identify and recognize the data and send that data to the base station or sink through either directly or intermediate node. These nodes with poor energy create intricacy on the data rate or flow and substantially affect the lifespan of a wireless sensor network. To decrease energy utilization the sensor node has to neglect unnecessary received data from the neighbouring nodes prior to send the optimum data to the sink or another device. When a specific target is held in a particular sector, it can be identified by many sensors. To rectify such process this paper present Data agglomeration technique is one of the persuasive techniques in the neglecting unnecessary data and of improves energy efficiency and also it increases the lifetime of WSNs. The efficacious data aggregation paradigm can also decrease traffic in the network. This paper discussed various data agglomeration technique for efficient energy in WSN.


The emergence of sensor networks as one of the dominant technology trends in the coming decades has posed numerous unique challenges on their security to researchers. These networks are likely to be composed of thousands of tiny sensor nodes, which are low-cost devices equipped with limited memory, processing, radio, and in many cases, without access to renewable energy resources. While the set of challenges in sensor networks are diverse, we focus on security of Wireless Sensor Network in this paper. First, we propose some of the security goal for Wireless Sensor Network. To perform any task in WSN, the goal is to ensure the best possible utilization of sensor resources so that the network could be kept functional as long as possible. In contrast to this crucial objective of sensor network management, a Denial of Service (DoS) attack targets to degrade the efficient use of network resources and disrupts the essential services in the network. DoS attack could be considered as one of th


Author(s):  
Priyanka Ranaware ◽  
N.D. Dhoot

<p class="Default">This paper proposes a novel industrial wireless sensor network for industrial machine condition monitoring. To avoid unexpected equipment failures and obtain higher accuracy in diagnostic and prognostic for the health condition of a motor, efficient and comprehensive data collecting, monitoring, and control play an important role to improve the system more reliable and effective. A novel wireless data collection for health monitoring system of electric machine based on wireless sensor network is proposed and developed in this paper. The unique characteristics of ZigBee networks such as low power, low cost, and high flexibility make them ideal for this application. The proposed system consists of wireless sensor nodes which are organized into a monitoring network by ZigBee protocols. A base station and wireless nodes have been developed to form a prototype system. Various sensors have the capability to monitor physiological as well as environmental conditions. Therefore proposed system provides a flexible solution that makes our living spaces more intelligent.</p>


2015 ◽  
Vol 5 (5) ◽  
pp. 655-676 ◽  
Author(s):  
Francesco Potenza ◽  
Fabio Federici ◽  
Marco Lepidi ◽  
Vincenzo Gattulli ◽  
Fabio Graziosi ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1755 ◽  
Author(s):  
Romwald Lihakanga ◽  
Yuan Ding ◽  
Gabriela M. Medero ◽  
Samuel Chapman ◽  
George Goussetis

This paper presents an in-situ wireless sensor network (WSN) for building envelope thermal transmission analysis. The WSN is able to track heat flows in various weather conditions in real-time. The developed system focuses on long-term in-situ building material variation analysis, which cannot be readily achieved using current approaches, especially when the number of measurement hotspots is large. This paper describes the implementation of the proposed system using the heat flow method enabled through an adaptable and low-cost wireless network, validated via a laboratory experiment.


Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


2019 ◽  
Vol 16 (9) ◽  
pp. 4034-4043
Author(s):  
Rani Poonam ◽  
Sharma Avinash

Wireless Sensor Network (WSN) is an emerging area in past few decades. Through the integration of low cost sensor nodes with Internet of Things (IoT), lots of applications are common now these days. Each application senses and transmits the fused data to the sink. This wireless data transmission is called routing and is the main governing factor for the span of the sensor network. This paper analyzes and presents different variety of routing techniques based on connectivity structure of the sensors. The type of application for which sensor nodes are used governs selection of a routing technique.


2018 ◽  
Vol 7 (S1) ◽  
pp. 50-53
Author(s):  
K. Madhumathi . ◽  
T. Suresh .

Wireless Sensor Network consists of large number of autonomous, small, low cost sensor nodes that are spatially distributed in areas of investigation like disaster management, Military, environmental monitoring etc. The main purpose of using those nodes is to collect information from source and process it in destination. But the data received in the destination are useless unless the exact location of source is not known. The task of finding physical coordinates of these sensor nodes in WSNs area is known as localization. One solution for the above problem is manual configuration of sensor but it is unfeasible if the area of deployment is large or inaccessible. Therefore, we use localization techniques which help to capture the location of nodes in wireless sensor network. This study analyses localization algorithms with their pros and cons.


Author(s):  
Hanane Aznaoui ◽  
Said Raghay ◽  
Arif Ullah ◽  
Mubashir Hayat Khan

<p class="0affiliation">Due to the rapid growth in technologies has led to the development of sensor nodes. As we know that wireless sensor network is collection of small and large number of sensor node. These sensor nodes are used for different domain like environmental research, health care, monitor, military, and record the physical activity. These nodes communicate with each other and forward the message to base station. For communication of these node different algorithms used Geographical adaptive fidelity (GAF) is one of them. Dropping energy utilization in wireless sensor network directly affects the network lifetime. HGAF is one of the important multiple location based on routing system algorithm. The main function of HGAF technique is to turn-off the unnecessary nodes in the network without interrupting the other connected node. In this paper we proposed a technique known as modified HGAF and it design as a power saving method. In the proposed technique the size of cell structure in grid changed and communication method improve due to those changes.  Based on the result the proposed technique increase 25% in dead node ratio and also increase the network.</p>


Sign in / Sign up

Export Citation Format

Share Document