Design and Implementation of a Continuous Wave Near Infrared Spectroscopy System for Bedside and Home Monitoring

2011 ◽  
Vol 1 (4) ◽  
pp. 317-324 ◽  
Author(s):  
Han Xue ◽  
Marco Bestonzo ◽  
U. Rajendra Acharya ◽  
Filippo Molinari
2011 ◽  
Vol 04 (03) ◽  
pp. 239-250 ◽  
Author(s):  
KURTULUS IZZETOGLU ◽  
HASAN AYAZ ◽  
ANNA MERZAGORA ◽  
MELTEM IZZETOGLU ◽  
PATRICIA A. SHEWOKIS ◽  
...  

In the late 1980s and early 1990s, Dr. Britton Chance and his colleagues, using picosecond-long laser pulses, spearheaded the development of time-resolved spectroscopy techniques in an effort to obtain quantitative information about the optical characteristics of the tissue. These efforts by Chance and colleagues expedited the translation of near-infrared spectroscopy (NIRS)-based techniques into a neuroimaging modality for various cognitive studies. Beginning in the early 2000s, Dr. Britton Chance guided and steered the collaboration with the Optical Brain Imaging team at Drexel University toward the development and application of a field deployable continuous wave functional near-infrared spectroscopy (fNIR) system as a means to monitor cognitive functions, particularly during attention and working memory tasks as well as for complex tasks such as war games and air traffic control scenarios performed by healthy volunteers under operational conditions. Further, these collaborative efforts led to various clinical applications, including traumatic brain injury, depth of anesthesia monitoring, pediatric pain assessment, and brain–computer interface in neurology. In this paper, we introduce how these collaborative studies have made fNIR an excellent candidate for specified clinical and research applications, including repeated cortical neuroimaging, bedside or home monitoring, the elicitation of a positive effect, and protocols requiring ecological validity. This paper represents a token of our gratitude to Dr. Britton Chance for his influence and leadership. Through this manuscript we show our appreciation by contributing to his commemoration and through our work we will strive to advance the field of optical brain imaging and promote his legacy.


2019 ◽  
Vol 9 (11) ◽  
pp. 2366 ◽  
Author(s):  
Laura Di Sieno ◽  
Alberto Dalla Mora ◽  
Alessandro Torricelli ◽  
Lorenzo Spinelli ◽  
Rebecca Re ◽  
...  

In this paper, a time-domain fast gated near-infrared spectroscopy system is presented. The system is composed of a fiber-based laser providing two pulsed sources and two fast gated detectors. The system is characterized on phantoms and was tested in vivo, showing how the gating approach can improve the contrast and contrast-to-noise-ratio for detection of absorption perturbation inside a diffusive medium, regardless of source-detector separation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Noman Naseer ◽  
Nauman Khalid Qureshi ◽  
Farzan Majeed Noori ◽  
Keum-Shik Hong

We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest) using functional near-infrared spectroscopy (fNIRS) signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO) signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),k-nearest neighbour (kNN), the Naïve Bayes approach, support vector machine (SVM), and artificial neural networks (ANN), were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that thepvalues were statistically significant relative to all of the other classifiers (p< 0.005) using HbO signals.


2001 ◽  
Vol 21 (2) ◽  
pp. 110-113 ◽  
Author(s):  
Marjo J. T. Van de Ven ◽  
Willy N. J. M. Colier ◽  
Marco C. van der Sluijs ◽  
Diederik Walraven ◽  
Berend Oeseburg ◽  
...  

In some circumstances, cerebral blood volume (CBV) can be used as a measure for cerebral blood flow. A new near infrared spectroscope was used for determining the reproducibility of CBV measurements assessed by the O2-method. Twenty-seven healthy subjects were investigated. An intrasubject coefficient of variation (CV) was calculated, based on four identical episodes of desaturation–resaturation (O2-method) procedures for CBV measurements. Two trials were performed, with (trial 1) and without (trial 2) disconnecting the equipment. A mean CV of 12.6% and 10.0% was found in trial 1 and 2, respectively. Cerebral blood volume values yield 3.60 ± 0.82 mL 100 g−1. Cerebral blood volume could be measured reproducible in adults using near infrared spectroscopy, if the arterial desaturation is limited to approximately 5% from baseline level.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Zhang ◽  
Xin Liu ◽  
Dan Liu ◽  
Chunling Yang ◽  
Qisong Wang ◽  
...  

The performance of functional near-infrared spectroscopy (fNIRS) is sometimes degraded by the interference caused by the physical or the systemic physiological activities. Several interferences presented during fNIRS recordings are mainly induced by cardiac pulse, breathing, and spontaneous physiological low-frequency oscillations. In previous work, we introduced a multidistance measurement to reduce physiological interference based on recursive least squares (RLS) adaptive filtering. Monte Carlo simulations have been implemented to evaluate the performance of RLS adaptive filtering. However, its suitability and performance on human data still remain to be evaluated. Here, we address the issue of how to detect evoked hemodynamic response to auditory stimulus using RLS adaptive filtering method. A multidistance probe based on continuous wave fNIRS is devised to achieve the fNIRS measurement and further study the brain functional activation. This study verifies our previous findings that RLS adaptive filtering is an effective method to suppress global interference and also provides a practical way for real-time detecting brain activity based on multidistance measurement.


Author(s):  
Michele Lacerenza ◽  
Mauro Buttafava ◽  
Marco Renna ◽  
Alessandro Torricelli ◽  
Alberto Tosi ◽  
...  

2013 ◽  
Vol 21 (25) ◽  
pp. 30849 ◽  
Author(s):  
Ali M. Fard ◽  
Paulino Vacas-Jacques ◽  
Ehsan Hamidi ◽  
Hao Wang ◽  
Robert W. Carruth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document