A Novel Texture Analysis Method Based on Reverse Biorthogonal Wavelet and Co-Occurrence Matrix Applied for Classification of Hepatocellular Carcinoma and Hepatic Hemangioma

2018 ◽  
Vol 8 (9) ◽  
pp. 1835-1843 ◽  
Author(s):  
Jia-Jun Qiu ◽  
Yue Wu ◽  
Bei Hui ◽  
Jia Chen ◽  
Lin Ji ◽  
...  

Purpose: To explore the feasibility of classifying hepatocellular carcinoma (HCC) and hepatic hemangioma (HEM) using texture features of non-enhanced computed tomography (CT) images, especially to investigate the effectiveness of a novel texture analysis method based on the combination of wavelet and co-occurrence matrix. Methods: 269 patients were retrospectively analyzed, including 129 HCCs and 140 HEMs. We cropped tumor regions of interest (ROIs) on non-enhanced CT images, and then used four texture analysis methods to extract quantitative data of the ROIs: gray-level histogram (GLH), gray-level co-occurrence matrix (GLCM), reverse biorthogonal wavelet transform (RBWT), and reverse biorthogonal wavelet co-occurrence matrix (RBCM). The RBCM was a novel method proposed in this study that combined wavelet transform and co-occurrence matrix. It discretized wavelet coefficient matrices based on the statistical characteristics of the training set. Thus, four sets of texture features were obtained. We then conducted classification studies using support vector machine on each set of texture features. 10-fold cross training and testing were used in the classifications, and their results were evaluated and compared. In addition, we tested the significant differences in the texture features of the RBCM method and explored the possible relationships between textures and lesion types. Results: The RBCM method achieved the best classification performance: its average accuracy was 82.14%; its average AUC (area under the receiver operating characteristic curve) was 0.8423. In addition, using the methods of GLH, GLCM, and RBWT, their average accuracies were 75.81%, 78.79%, and 78.8%, respectively. Conclusions: It indicates that the developed texture analysis methods are rewarding for computer-aided diagnosis of HCC and HEM based on non-enhanced CT images. Furthermore, the distinguishing ability of the proposed RBCM method is more pronounced.

2016 ◽  
Vol 12 (4) ◽  
pp. 311-321
Author(s):  
Qian Mao ◽  
Yonghai Sun ◽  
Jumin Hou ◽  
Libo Yu ◽  
Yang Liu ◽  
...  

Abstract The objective of this study was to investigate the relationships of image texture properties with chewing behaviors, and mechanical properties during mastication of bread. Gray-level gradient co-occurrence matrix (GGCM) was used to process the images of boluses. The chewing behaviors were recorded by electromyography (EMG), and the mechanical properties were measured by texture analyzer. The results showed that among the texture features, the inverse difference moment (IDMGGCM) was selected as the main parameter to describe the decomposition of boluses. IDMGGCM was positively related to the weight gain (r = 0.865, p < 0.01), negatively correlated with hardness (r = –0.835, p <0.01) and EMG activity per cycle (r = –0.767, p < 0.01). GGCM is an effective texture analysis method that could correctly identify 70.1–80.8 % of food bolus images to the corresponding chewing cycles. This study provided a new clue for texture analysis of bread bolus images and offered data revealing the bolus property changes during the mastication of bread.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 195
Author(s):  
Małgorzata Domino ◽  
Marta Borowska ◽  
Anna Trojakowska ◽  
Natalia Kozłowska ◽  
Łukasz Zdrojkowski ◽  
...  

Appropriate matching of rider–horse sizes is becoming an increasingly important issue of riding horses’ care, as the human population becomes heavier. Recently, infrared thermography (IRT) was considered to be effective in differing the effect of 10.6% and 21.3% of the rider:horse bodyweight ratio, but not 10.1% and 15.3%. As IRT images contain many pixels reflecting the complexity of the body’s surface, the pixel relations were assessed by image texture analysis using histogram statistics (HS), gray-level run-length matrix (GLRLM), and gray level co-occurrence matrix (GLCM) approaches. The study aimed to determine differences in texture features of thermal images under the impact of 10–12%, >12 ≤15%, >15 <18% rider:horse bodyweight ratios, respectively. Twelve horses were ridden by each of six riders assigned to light (L), moderate (M), and heavy (H) groups. Thermal images were taken pre- and post-standard exercise and underwent conventional and texture analysis. Texture analysis required image decomposition into red, green, and blue components. Among 372 returned features, 95 HS features, 48 GLRLM features, and 96 GLCH features differed dependent on exercise; whereas 29 HS features, 16 GLRLM features, and 30 GLCH features differed dependent on bodyweight ratio. Contrary to conventional thermal features, the texture heterogeneity measures, InvDefMom, SumEntrp, Entropy, DifVarnc, and DifEntrp, expressed consistent measurable differences when the red component was considered.


Author(s):  
Mona E. Elbashier ◽  
Suhaib Alameen ◽  
Caroline Edward Ayad ◽  
Mohamed E. M. Gar-Elnabi

This study concern to characterize the pancreas areato head, body and tail using Gray Level Run Length Matrix (GLRLM) and extract classification features from CT images. The GLRLM techniques included eleven’s features. To find the gray level distribution in CT images it complements the GLRLM features extracted from CT images with runs of gray level in pixels and estimate the size distribution of thesubpatterns. analyzing the image with Interactive Data Language IDL software to measure the grey level distribution of images. The results show that the Gray Level Run Length Matrix and  features give classification accuracy of pancreashead 89.2%, body 93.6 and the tail classification accuracy 93.5%. The overall classification accuracy of pancreas area 92.0%.These relationships are stored in a Texture Dictionary that can be later used to automatically annotate new CT images with the appropriate pancreas area names.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhu ◽  
Yingfan Mao ◽  
Jun Chen ◽  
Yudong Qiu ◽  
Yue Guan ◽  
...  

AbstractTo explore the value of contrast-enhanced CT texture analysis in predicting isocitrate dehydrogenase (IDH) mutation status of intrahepatic cholangiocarcinomas (ICCs). Institutional review board approved this study. Contrast-enhanced CT images of 138 ICC patients (21 with IDH mutation and 117 without IDH mutation) were retrospectively reviewed. Texture analysis was performed for each lesion and compared between ICCs with and without IDH mutation. All textural features in each phase and combinations of textural features (p < 0.05) by Mann–Whitney U tests were separately used to train multiple support vector machine (SVM) classifiers. The classification generalizability and performance were evaluated using a tenfold cross-validation scheme. Among plain, arterial phase (AP), portal venous phase (VP), equilibrium phase (EP) and Sig classifiers, VP classifier showed the highest accuracy of 0.863 (sensitivity, 0.727; specificity, 0.885), with a mean area under the receiver operating characteristic curve of 0.813 in predicting IDH mutation in validation cohort. Texture features of CT images in portal venous phase could predict IDH mutation status of ICCs with SVM classifier preoperatively.


2020 ◽  
Vol 3 (4) ◽  
pp. 240-251
Author(s):  
Dmitro Yuriiovych Hrishko ◽  
Ievgen Arnoldovich Nastenko ◽  
Maksym Oleksandrovych Honcharuk ◽  
Volodymyr Anatoliyovich Pavlov

This article discusses the use of texture analysis methods to obtain informative features that describe the texture of liver ultrasound images. In total, 317 liver ultrasound images were analyzed, which were provided by the Institute of Nuclear Medicine and Radiation Diagnostics of NAMS of Ukraine. The images were taken by three different sensors (convex, linear, and linear sensor in increased signal level mode). Both images of patients with a normal liver condition and patients with specific liver disease (there were diseases such as: autoimmune hepatitis, Wilson's disease, hepatitis B and C, steatosis, and cirrhosis) were present in the database. Texture analysis was used for “Feature Construction”, which resulted in more than a hundred different informative features that made up a common stack. Among them, there are such features as: three authors’ patented features derived from the grey level co-occurrence matrix; features, obtained with the help of spatial sweep method (working by the principle of group method of data handling), which was applied to ultrasound images; statistical features, calculated on the images, brought to one scale with the help of differential horizontal and vertical matrices, which are proposed by the authors; greyscale pairs ensembles (found using the genetic algorithm), which identify liver pathology on images, transformed with the help of horizontal and vertical differentiations, in the best possible way. The resulting trait stack was used to solve the problem of binary classification (“norma-pathology”) of ultrasound liver images. A Machine Learning method, namely “Random Forest”, was used for this purpose. Before the classification, in order to obtain objective results, the total samples were divided into training (70 %), testing (20 %), and examining (10 %). The result was the best three Random Forest models separately for each sensor, which gave the following recognition rates: 93.4 % for the convex sensor, 92.9 % for the linear sensor, and 92 % for the reinforced linear sensor


Author(s):  
B.V. DHANDRA ◽  
VIJAYALAXMI.M. B ◽  
GURURAJ MUKARAMBI ◽  
MALLIKARJUN. HANGARGE

Writer identification problem is one of the important area of research due to its various applications and is a challenging task. The major research on writer identification is based on handwritten English documents with text independent and dependent. However, there is no significant work on identification of writers based on Kannada document. Hence, in this paper, we propose a text-independent method for off-line writer identification based on Kannada handwritten scripts. By observing each individual’s handwriting as a different texture image, a set of features based on Discrete Cosine Transform, Gabor filtering and gray level co-occurrence matrix, are extracted from preprocessed document image blocks. Experimental results demonstrate that the Gabor energy features are more potential than the DCTs and GLCMs based features for writer identification from 20 people.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi142-vi142
Author(s):  
Kaylie Cullison ◽  
Garrett Simpson ◽  
Danilo Maziero ◽  
Kolton Jones ◽  
Radka Stoyanova ◽  
...  

Abstract A dilemma in treating glioblastoma is that MRI after chemotherapy and radiation therapy (chemoRT) shows areas of presumed tumor growth in up to 50% of patients. These areas can represent true progression (TP), tumor growth with tumors non-responsive to treatment, or pseudoprogression (PP), edema and tumor necrosis with favorable treatment response. On imaging, TP and PP are usually not discernable. Patients in this study undergo six weeks of chemoRT on a combination MRI/RT device, receiving daily MRIs. The goal of this study is to explore the correlation of radiomics features with progression. The tumor lesion and surrounding areas of growth/edema were manually outlined as regions of interest (ROIs) for each daily T2-weighted MRI scan. The ROIs were used to calculate texture features: statistical features based on the gray-level co-occurrence matrix (GLCM), the gray-level zone size matrix (GLZSM), the gray-level run length matrix (GLRLM), and the neighborhood gray-tone difference matrix (NGTDM). Each of these matrix classes describe the probability of spatial relationships of gray levels occurring within the ROI. Daily texture features were averaged per week of treatment for each patient. Patient response was retrospectively defined as no progression (NP), TP, or PP. A Kruskal-Wallis test was performed to identify texture features that correlated most strongly with patient response. Forty texture features were calculated for 12 patients (19 treated, 7 excluded due to no T2 lesion or progression status unknown, 6 NP, 3 TP, 3 PP). There was a trend of more texture features correlating significantly with response in weeks 4-6 of treatment, compared to weeks 1-3. A particular texture feature, GLSZM Small Zone Low Gray-Level Emphasis, showed increasing difference between PP and TP over time, with significant difference during week 6 of treatment (p=0.0495). Future directions include correlating early outcomes with greater numbers of patients and daily multiparametric MRI.


Sign in / Sign up

Export Citation Format

Share Document