An Early Breast Cancer Detection System Using Stacked Auto Encoder Deep Neural Network with Particle Swarm Optimization Based Classification Method

2021 ◽  
Vol 11 (12) ◽  
pp. 2897-2906
Author(s):  
K. Sangeetha ◽  
S. Prakash

The demand in breast cancer’s early detection and diagnosis over the last few decade has given a new research avenues. For an individual who is suffered from breast cancer, a successful treatment plan can be specified if early stage diagnosis of non-communicable disease is done as stated by world health organization (WHO). Around the world, mortality can be reduced by cure disease’s early diagnosis. For breast cancer’s early detection and to detect other abnormalities of human breast tissue, digital mammogram is used as a most popular screening method. Early detection is assisted by periodic clinical check-ups and self-tests and survival chance is significantly enhanced by it. For mammograms (MGs), deep learning (DL) methods are investigated by researchers due to traditional computer-aided detection (CAD) systems limitations and breast cancer’s early detection’s extreme importance and patients false diagnosis high impact. So, there is need to have a noninvasive cancer detection system which is efficient, accurate, fast and robust. There are two process in proposed work, Histogram Rehabilitated Local Contrast Enhancement (HRLCE) technique is used in initial process for contrast enhancement with two processing stages. Contrast enhancements potentiality is enhanced while preserving image’s local details by this technique. So, for cancer classification, Particle Swarm Optimization (PSO) and stacked auto encoders (SAE) combined with framework based on DNN called SAE-PSO-DNN Model is used. The SAE-DNN parameters with two hidden layers are tuned using PSO and Limited-memory BFGS (LBFGS) is used as a technique for reducing features. Specificity, sensitivity, normalized root mean square erro (NRMSE), accuracy parameters are used for evaluating SAE-PSO-DNN models results. Around 92% of accurate results are produced by SAE-PSO-DNN model as shown in experimentation results, which is far better than Convolutional Neural Network (CNN) as well as Support Vector Machine (SVM) techniques.

2022 ◽  
Vol 22 (3) ◽  
pp. 1-17
Author(s):  
Chaonan Shen ◽  
Kai Zhang ◽  
Jinshan Tang

COVID-19 has been spread around the world and has caused a huge number of deaths. Early detection of this disease is the most efficient way to prevent its rapid spread. Due to the development of internet technology and edge intelligence, developing an early detection system for COVID-19 in the medical environment of the Internet of Things (IoT) can effectively alleviate the spread of the disease. In this paper, a detection algorithm is developed, which can detect COVID-19 effectively by utilizing the features from Chest X-ray (CXR) images. First, a pre-trained model (ResNet18) is adopted for feature extraction. Then, a discrete social learning particle swarm optimization algorithm (DSLPSO) is proposed for feature selection. By filtering redundant and irrelevant features, the dimensionality of the feature vector is reduced. Finally, the images are classified by a Support Vector Machine (SVM) for COVID-19 detection. Experimental results show that the proposed algorithm can achieve competitive performance with fewer features, which is suitable for edge computing devices with lower computation power.


2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.


Sign in / Sign up

Export Citation Format

Share Document