A Highly Ordered Self-Assembly Three-Grade Porous Helical Silica Tube

2008 ◽  
Vol 8 (3) ◽  
pp. 1497-1501
Author(s):  
Fei Gao ◽  
Lin Dong ◽  
Yan Kong ◽  
Yanhua Zhang ◽  
Xingcai Wu ◽  
...  

A novel three-grade porous helical silica tube is prepared through an ingenious multi-soft-template pathway. This study reveals that three-(or multi-)grade self-assembly porous structure can be realized by using the synergistic effect of soft-templates. Our finding can offer an opportunity for nanofabrication including rational molecular design, spatial control on a nanoscale, and hierarchical assembly of complexarchitectures of porous materials.

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1636 ◽  
Author(s):  
Dan Mu ◽  
Jian-Quan Li ◽  
Xing-Shun Cong ◽  
Han Zhang

The most common self-assembly structure for A2B copolymer is the micellar structure with B/A segments being the core/corona, which greatly limits its application range. Following the principle of structure deciding the properties, a reformation in the molecular structure of A2B copolymer is made by appending three segments of a third component C with the same length to the three arms, resulting (AC)2CB 3-miktoarm star terpolymer. A reverse micellar structure in self-assembly is expected by regulating the C length and the pairwise repulsive strength of C to A/B, aiming to enrich its application range. Keeping both A and B lengths unchanged, when the repulsion strength of C to A is much stronger than C to B, from the results of mesoscopic simulations we found, with a progressive increase in C length, (AC)2CB terpolymer undergoes a transition in self-assembled structures, from a cylindrical structure with B component as the core, then to a deformed lamellar structure, and finally to a cylindrical structure with A component as the core. This reverse micellar structure is formed with the assistance of appended C segments, whose length is longer than half of B length, enhancing the flexibility of three arms, and further facilitating the aggregation of A component into the core. These results prove that the addition of a third component is a rational molecular design, in conjunction with some relevant parameters, enables the manufacturing of the desired self-assembly structure while avoiding excessive changes in the involved factors.


RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 29757-29765 ◽  
Author(s):  
Jie Zhang ◽  
Xiangli Xie ◽  
Cunjun Li ◽  
Hai Wang ◽  
Linjiang Wang

Flower-like MgAl-SDS-LDH microstructures with a hierarchical porous structure with both large and small mesopores on their surface were synthesized by a self-assembly route, employing the anionic surfactant sodium dodecyl sulfate (SDS) as a soft template.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Junhua Zhao ◽  
Qin Hu ◽  
Yinlin Lei ◽  
Chuanhua Gao ◽  
Pinjie Zhang ◽  
...  

As a powerful self-assembly process, the soft-template method has attracted considerable scientific interest, but there is a challenge associated with ultralong hydroxyapatite nanowire (HAPNWs) with several tens of micro-scale length....


2017 ◽  
Vol 53 (82) ◽  
pp. 11349-11352 ◽  
Author(s):  
Heidi Li-Ki Fu ◽  
Sammual Yu-Lut Leung ◽  
Vivian Wing-Wah Yam

The self-assembly of strategically designed triazine-containing alkynylplatinum(ii) terpyridine complexes yielded sophisticated helical ribbons through a balance of multiple non-covalent interactions.


2020 ◽  
Author(s):  
Cristina Garcia-Iriepa ◽  
Cecilia Hognon ◽  
Antonio Francés-Monerris ◽  
Isabel Iriepa ◽  
Tom Miclot ◽  
...  

<div><p>Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 180,000 deaths all over the world, still lacking a medical treatment despite the concerns of the whole scientific community. Human Angiotensin-Converting Enzyme 2 (ACE2) was recently recognized as the transmembrane protein serving as SARS-CoV-2 entry point into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the complex and of the effects of possible ligands. Moreover, binding free energy between ACE2 and the active Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein is evaluated quantitatively, assessing the molecular mechanisms at the basis of the recognition and the ligand-induced decreased affinity. These results boost the knowledge on the molecular grounds of the SARS-CoV-2 infection and allow to suggest rationales useful for the subsequent rational molecular design to treat severe COVID-19 cases.</p></div>


Soft Matter ◽  
2021 ◽  
Author(s):  
Zhiqiang Zhao ◽  
Zheng Bian ◽  
Yu Chen ◽  
Chuanqing Kang ◽  
Lianxun Gao ◽  
...  

Chiral oligo(methylene-p-phenyleneethynylene)s can form vesicular assemblies no matter whether side chains and solvents are hydrophilic or hydrophobic. The self-assembly processes are highly independent of molecular design and chemical environments.


Author(s):  
Joshua D. Carter ◽  
Chenxiang Lin ◽  
Yan Liu ◽  
Hao Yan ◽  
Thomas H. LaBean

This article examines the DNA-based self-assembly of nanostructures. It first reviews the development of DNA self-assembly and DNA-directed assembly, focusing on the main strategies and building blocks available in the modern molecular construction toolbox, including the design, construction, and analysis of nanostructures composed entirely of synthetic DNA, as well as origami nanostructures formed from a mixture of synthetic and biological DNA. In particular, it considers the stepwise covalent synthesis of DNA nanomaterials, unmediated assembly of DNA nanomaterials, hierarchical assembly, nucleated assembly, and algorithmic assembly. It then discusses DNA-directed assembly of heteromaterials such as proteins and peptides, gold nanoparticles, and multicomponent nanostructures. It also describes the use of complementary DNA cohesion as 'smart glue' for bringing together covalently linked functional groups, biomolecules, and nanomaterials. Finally, it evaluates the potential future of DNA-based self-assembly for nanoscale manufacturing for applications in medicine, electronics, photonics, and materials science.


2013 ◽  
Vol 58 (4) ◽  
pp. 927-931 ◽  
Author(s):  
Xu Wu ◽  
Xiaoxin Cai ◽  
Ahui Hao ◽  
Jinben Wang

2016 ◽  
Vol 2 (1) ◽  
pp. e1501297 ◽  
Author(s):  
Qian Zhao ◽  
Weike Zou ◽  
Yingwu Luo ◽  
Tao Xie

Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices.


Sign in / Sign up

Export Citation Format

Share Document