scholarly journals Mesoscopic Detection of the Influence of a Third Component on the Self-Assembly Structure of A2B Star Copolymer in Thin Films

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1636 ◽  
Author(s):  
Dan Mu ◽  
Jian-Quan Li ◽  
Xing-Shun Cong ◽  
Han Zhang

The most common self-assembly structure for A2B copolymer is the micellar structure with B/A segments being the core/corona, which greatly limits its application range. Following the principle of structure deciding the properties, a reformation in the molecular structure of A2B copolymer is made by appending three segments of a third component C with the same length to the three arms, resulting (AC)2CB 3-miktoarm star terpolymer. A reverse micellar structure in self-assembly is expected by regulating the C length and the pairwise repulsive strength of C to A/B, aiming to enrich its application range. Keeping both A and B lengths unchanged, when the repulsion strength of C to A is much stronger than C to B, from the results of mesoscopic simulations we found, with a progressive increase in C length, (AC)2CB terpolymer undergoes a transition in self-assembled structures, from a cylindrical structure with B component as the core, then to a deformed lamellar structure, and finally to a cylindrical structure with A component as the core. This reverse micellar structure is formed with the assistance of appended C segments, whose length is longer than half of B length, enhancing the flexibility of three arms, and further facilitating the aggregation of A component into the core. These results prove that the addition of a third component is a rational molecular design, in conjunction with some relevant parameters, enables the manufacturing of the desired self-assembly structure while avoiding excessive changes in the involved factors.

2017 ◽  
Vol 19 (33) ◽  
pp. 21938-21945 ◽  
Author(s):  
Dan Mu ◽  
Jian-Quan Li ◽  
Sheng-Yu Feng

The self-assembly of a copolymer thin film, whose molecular structure is composed of one hydrophobic branch (denoted in green) and two hydrophilic branches (denoted in red), gives (a) cylindrical structure, (b) micellar structure, and (c) lamellar structure.


2008 ◽  
Vol 8 (3) ◽  
pp. 1497-1501
Author(s):  
Fei Gao ◽  
Lin Dong ◽  
Yan Kong ◽  
Yanhua Zhang ◽  
Xingcai Wu ◽  
...  

A novel three-grade porous helical silica tube is prepared through an ingenious multi-soft-template pathway. This study reveals that three-(or multi-)grade self-assembly porous structure can be realized by using the synergistic effect of soft-templates. Our finding can offer an opportunity for nanofabrication including rational molecular design, spatial control on a nanoscale, and hierarchical assembly of complexarchitectures of porous materials.


2017 ◽  
Vol 53 (82) ◽  
pp. 11349-11352 ◽  
Author(s):  
Heidi Li-Ki Fu ◽  
Sammual Yu-Lut Leung ◽  
Vivian Wing-Wah Yam

The self-assembly of strategically designed triazine-containing alkynylplatinum(ii) terpyridine complexes yielded sophisticated helical ribbons through a balance of multiple non-covalent interactions.


2020 ◽  
Author(s):  
Cristina Garcia-Iriepa ◽  
Cecilia Hognon ◽  
Antonio Francés-Monerris ◽  
Isabel Iriepa ◽  
Tom Miclot ◽  
...  

<div><p>Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 180,000 deaths all over the world, still lacking a medical treatment despite the concerns of the whole scientific community. Human Angiotensin-Converting Enzyme 2 (ACE2) was recently recognized as the transmembrane protein serving as SARS-CoV-2 entry point into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the complex and of the effects of possible ligands. Moreover, binding free energy between ACE2 and the active Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein is evaluated quantitatively, assessing the molecular mechanisms at the basis of the recognition and the ligand-induced decreased affinity. These results boost the knowledge on the molecular grounds of the SARS-CoV-2 infection and allow to suggest rationales useful for the subsequent rational molecular design to treat severe COVID-19 cases.</p></div>


Soft Matter ◽  
2021 ◽  
Author(s):  
Zhiqiang Zhao ◽  
Zheng Bian ◽  
Yu Chen ◽  
Chuanqing Kang ◽  
Lianxun Gao ◽  
...  

Chiral oligo(methylene-p-phenyleneethynylene)s can form vesicular assemblies no matter whether side chains and solvents are hydrophilic or hydrophobic. The self-assembly processes are highly independent of molecular design and chemical environments.


2013 ◽  
Vol 58 (4) ◽  
pp. 927-931 ◽  
Author(s):  
Xu Wu ◽  
Xiaoxin Cai ◽  
Ahui Hao ◽  
Jinben Wang

2016 ◽  
Vol 2 (1) ◽  
pp. e1501297 ◽  
Author(s):  
Qian Zhao ◽  
Weike Zou ◽  
Yingwu Luo ◽  
Tao Xie

Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1772 ◽  
Author(s):  
Maria de los Angeles Cortes ◽  
Raquel de la Campa ◽  
Maria Luisa Valenzuela ◽  
Carlos Díaz ◽  
Gabino A. Carriedo ◽  
...  

During the last number of years a variety of crystallization-driven self-assembly (CDSA) processes based on semicrystalline block copolymers have been developed to prepare a number of different nanomorphologies in solution (micelles). We herein present a convenient synthetic methodology combining: (i) The anionic polymerization of 2-vinylpyridine initiated by organolithium functionalized phosphane initiators; (ii) the cationic polymerization of iminophosphoranes initiated by –PR2Cl2; and (iii) a macromolecular nucleophilic substitution step, to prepare the novel block copolymers poly(bistrifluoroethoxy phosphazene)-b-poly(2-vinylpyridine) (PTFEP-b-P2VP), having semicrystalline PTFEP core forming blocks. The self-assembly of these materials in mixtures of THF (tetrahydrofuran) and 2-propanol (selective solvent to P2VP), lead to a variety of cylindrical micelles of different lengths depending on the amount of 2-propanol added. We demonstrated that the crystallization of the PTFEP at the core of the micelles is the main factor controlling the self-assembly processes. The presence of pyridinyl moieties at the corona of the micelles was exploited to stabilize gold nanoparticles (AuNPs).


Sign in / Sign up

Export Citation Format

Share Document