Thermal Conductivity on the Nanofluid of Graphene and Silver Nanoparticles Composite Material

2016 ◽  
Vol 16 (2) ◽  
pp. 1633-1637 ◽  
Author(s):  
Munkhshur Myekhlai ◽  
Taejin Lee ◽  
Battsengel Baatar ◽  
Hanshik Chung ◽  
Hyomin Jeong
2020 ◽  
pp. 096739112097811
Author(s):  
Munjula Siva Kumar ◽  
Santosh Kumar ◽  
Krushna Gouda ◽  
Sumit Bhowmik

The polymer composite material’s thermomechanical properties with fiber as reinforcement material have been widely studied in the last few decades. However, these fiber-based polymer composites exhibit problems such as fiber orientation, delamination, fiber defect along the length and bonding are the matter of serious concern in order to improve the thermomechanical properties and obtain isotropic material behavior. In the present investigation filler-based composite material is developed using natural hemp and high thermal conductive silver nanoparticles (SNP) and combination of dual fillers in neat epoxy polymer to investigate the synergetic influence. Among various organic natural fillers hemp filler depicts good crystallinity characteristics, so selected as a biocompatible filler along with SNP conductive filler. For enhancing their thermal conductivity and mechanical properties, hybridization of hemp filler along with silver nanoparticles are conducted. The composites samples are prepared with three different combinations such as sole SNP, sole hemp and hybrid (SNP and hemp) are prepared to understand their solo and hybrid combination. From results it is examined that, chemical treated hemp filler has to maximized its relative properties and showed, 40% weight % of silver nanoparticles composites have highest thermal conductivity 1.00 W/mK followed with hemp filler 0.55 W/mK and hybrid 0.76 W/mK composites at 7.5% of weight fraction and 47.5% of weight fraction respectively. The highest tensile strength is obtained for SNP composite 32.03 MPa and highest young’s modulus is obtained for hybrid composites. Dynamic mechanical analysis is conducted to find their respective storage modulus and glass transition temperature and that, the recorded maximum for SNP composites with 3.23 GPa and 90°C respectively. Scanning electron microscopy examinations clearly illustrated that formation of thermal conductivity chain is significant with nano and micro fillers incorporation.


2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


2018 ◽  
Vol 165 (7) ◽  
pp. F514-F525 ◽  
Author(s):  
R. Bock ◽  
A. D. Shum ◽  
X. Xiao ◽  
H. Karoliussen ◽  
F. Seland ◽  
...  

2019 ◽  
Vol 808 ◽  
pp. 103-108
Author(s):  
Lenka Mészárosová ◽  
Vít Černý ◽  
Rostislav Drochytka ◽  
Winfried Malorny

Development of new material is focused on modification of properties of materials with silicate binder so that these could be used for renovation of horizontal structures of high-temperature devices and at the same time contribute to reduction of heat transportation of constructions with higher surface temperature (in this case 200 and 500 °C). Main requirements for this material is low volume weight and low coefficient of thermal conductivity. This paper assesses influence of exposition to higher temperatures on microstructure.


2019 ◽  
Vol 27 (06) ◽  
pp. 1950161
Author(s):  
CAIXIA SUN ◽  
FENGYUN ZHANG ◽  
HONGXIA ZHANG ◽  
NIANLONG ZHANG ◽  
SHOUYING LI ◽  
...  

The effect of graphene content (0.08, 0.16 and 0.33[Formula: see text]wt.%) on the thermal conductivity and thermal aging performance of an Sn based composite material with 0.7[Formula: see text]wt.% Cu and various graphene additions was investigated via X-ray diffraction (XRD), scanning electron microscope (SEM) and accelerated thermal aging test. The XRD results showed that the graphene diffraction intensity was weak (approximately 10∘) due to little content and distribution of the graphene on the surface of the composite materials. After thermal aging testing the diffraction intensity on some crystal planes of the composite materials was enhanced, proving that preferential growth occurs on the crystal plane. SEM results showed that before aging testing no whiskers were generated on the surface of the composite materials. After the accelerated thermal aging at 100∘C for 24[Formula: see text]h, whisker growth became apparent in the composite materials. All the whiskers were located in the grains rather than on the grain boundaries of the composite materials. The highest thermal conductivity was obtained at 0.16[Formula: see text]wt.% graphene addition (indicated as 0.16[Formula: see text]wt.% graphene–0.7[Formula: see text]wt.% Cu/Sn). After the accelerated thermal aging at 100∘C for 24[Formula: see text]h, the bamboo-shaped whiskers with a low aspect ratio grew in large quantities on the surface of the 0.16[Formula: see text]wt.% graphene–0.7[Formula: see text]wt.% Cu/Sn composite material, while when the aging was at 100∘C for 366[Formula: see text]h the thermal conductivity decreased from 67[Formula: see text]W[Formula: see text][Formula: see text][Formula: see text][Formula: see text] to 52[Formula: see text]W[Formula: see text][Formula: see text][Formula: see text][Formula: see text]. When the graphene addition was 0.33[Formula: see text]wt.% (indicated as 0.33[Formula: see text]wt.% graphene–0.7[Formula: see text]wt.% Cu/Sn) the thermal conductivity maintains a value above 59[Formula: see text]W[Formula: see text][Formula: see text][Formula: see text][Formula: see text] after the accelerated thermal aging.


Sign in / Sign up

Export Citation Format

Share Document