Structure and Optical Thermometry Characterization of Er3+/Yb3+ Co-Doped BaGd2CuO5

2016 ◽  
Vol 16 (4) ◽  
pp. 3542-3546 ◽  
Author(s):  
Xiaodong Li ◽  
Yanjie Song ◽  
Yanmin Yang ◽  
Chao Mi ◽  
Yanzhou Liu ◽  
...  

Er3+/Yb3+ co-doped BaGd2CuO5 upconversion luminescent materials are obtained by solid phase method. Rietveld refinement on X-ray diffraction data indicates that Er3+/Yb3+ ions are inclined to occupy the Gd(1) site in the structure of BaGd2CuO5 (green phase). Two green emission peaks located at 523 nm and 547 nm have been produced by the excitation of 971 nm LD. The fluorescence intensity ratio (FIR) of the two green emission peaks have been investigated in the temperature range of 290 K–594 K. The maximum sensitivity derived from the FIR technique of the green upconversion emission is approximately 0.0038 K−1, and it has a high transmission power at low excitation density. This result implies that the Er3+/Yb3+ co-doped BaGd2CuO5 phosphors can play an important role in temperature measurements with a better sensitivity.

2016 ◽  
Vol 680 ◽  
pp. 208-211
Author(s):  
Lian Lian Wu ◽  
Qiang Li ◽  
Dan Yu Jiang ◽  
Jin Feng Xia

In this paper, La0.65Sr0.35MnO3 (LSM) oxide powder with ultrafine structure has been synthesized by self-propagating combustion method. The powders were characterized by X-ray diffraction, scanning electron microscopy and laser size analysis. Compared to the powders prepared by traditional solid-phase method, the grain size of powders prepared by self-propagating combustion method is relatively small and uniform. Starting from ultrafine LSM powders, sensing electrode (SE) for NO2 mixed-potential sensors based on yttria-stablized zirconia (YSZ) was fabricated. As-obtained NO2 sensor displays fast response and high sensitivity (25.4mV/decade). The response values of the sensor have good linear relationship with the logarithm of NO2 concentration varying from 30ppm to 500ppm.Keywords:Self-propagating combustion method; La0.65Sr0.35MnO3; NOx sensor; YSZ


2020 ◽  
Vol 3 (1) ◽  
pp. 28-39
Author(s):  
Esau Nii Abekah Akwetey Armah ◽  
Martin Egblewogbe ◽  
Hubert Azoda Koffi ◽  
Alfred Ato Yankson ◽  
Francis Kofi Ampong ◽  
...  

Powder samples of Zn1-xMnxO nanocrystal were synthesized at a temperature of 200 °C using solid phase method. Dopant concentrations of 0.005 ≤ x ≤ 0.5 were studied. Powder x-ray diffraction (PXRD) patterns of the samples were analyzed with a view of determining the onset of secondary phases, hence the solubility limit of the dopant. The solubility limit for Mn in ZnO samples synthesized at 200 °C is realized at x < 0.3. With a regular pattern in increment of the Mn concentration, there were variations observed in the trend of the relative intensity, 2θ position and d-spacing indicating uneven addition of Mn (thus Mn2+, Mn3+ or Mn4+).


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Limin Dong ◽  
Jian Li ◽  
Qin Li ◽  
Lianwei Shan ◽  
Zhidong Han

The SrxBa1−xTiO3: Eu3+, Gd3+phosphors are synthesized by high temperature solid-phase method. Multiple techniques including X-ray diffraction (XRD), and scanning electron microscopy (SEM) are used to examine the surface morphology and structural properties of SrxBa1−xTiO3: Eu3+, Gd3+phosphors. The optical properties are presented and discussed in terms of photoluminescence (PL) and photoluminescence excitation (PLE) spectra. The as-obtained SrxBa1−xTiO3: Eu3+, Gd3+phosphors show higher PL emission intensity (at 591, 611 nm). The peaks at 591 and 611 nm are attributed to Eu3+  5D0-7F1,5D0-7F2. Gd3+has a strong sensitization on Eu3+. A certain amount of Sr2+and Ba2+is contributed to the intensity of light emission. After being irradiated with blue light, the phosphor samples emit yellow light. This suggests its potential applications in many fields.


2013 ◽  
Vol 760-762 ◽  
pp. 772-775
Author(s):  
Xin You Huang ◽  
Yuan Zuo ◽  
Chun Hua Gao

Bi2(Mgl/3Nb2/3-xTix)2O7(BMNT)(x=0.1, 0.15, 0.2, 0.25) ceramics was prepared by conventional solid phase method, The influence of titanium ion doped amount on the dielectric property and microstructure of BMNT ceramics were systematically studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and other testing and analysis how to methods. Results show that there is single monoclinic pyrochlore phase and there is not the second phase in all BMNT ceramics doped with titanium ion. The grain size of BMNT ceramics increases first and then decreases, the dielectric constant (εr) increases first and then decreases, the dielectric loss (tanδ) increases first and then decreases, the ceramic density decreases all the time while titanium ion doped amount increases. The ceramic density increases first and then decreases when sintered temperature increases. The density of BMNT ceramics doped with titanium ion is biggest when sintered temperature is 980 °C. When sintered temperature is 980 °C and titanium ion doped amount is 0.15mol, the dielectric properties of BMNT ceramics is good,which εris 135(1MHz), tanδ is 0.002(1MHz) and volume density is 7.46g/cm3.


2021 ◽  
Author(s):  
Y.Z. Song ◽  
B.X. Qi ◽  
M.T. Li ◽  
J.M. Xie

Abstract Mn0.68Bi0.32OCl mix-crystals for supercapacitor were successfully synthesized via a facile solid-phase method using Bi(NO3)3 and MnCl2 with molar ratio of 1:1 as precursors. The Mn0.68Bi0.32OCl mix-crystals were characterized by scanning electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurements and thermogravimetry and differential scanning calorimetry, respectively. Cyclic voltammetry and galvanostatic charge/discharge technique were performed for the Mn0.68Bi0.32OCl mix-crystals in 1 M Na2SO4 aqueous solutions; the specific capacitance of Mn0.68Bi0.32OCl was about 203 F.g-1 at the current density of 3 A. g-1 with a long life time, owing to the high power density of Mn0.68Bi0.32OCl mix-crystals and the higher surface area, good conductivity, and high stability of the Mn0.68Bi0.32OCl mix-crystals.


2015 ◽  
Vol 713-715 ◽  
pp. 2868-2871 ◽  
Author(s):  
Jing Li ◽  
Xin Wang ◽  
Yan Chen ◽  
Wen Chang Zhuang

A simple and cost-effective low temperature (600 oC) solid phase method was proposed for the synthesis of CdTiO3 submicron particles, using Cd (OH)2 and P25 TiO2 as the starting materials. The composition and structure of the as-synthesized CdTiO3 submicron particles were characterized by X-ray diffraction and transmission electron microscopy. Besides, the optical properties of the as-synthesized CdTiO3 submicron particles were characterized by UV-vis diffuse reflection spectrum and photoluminescence spectrum.


Author(s):  
V.A. Artyukh ◽  
◽  
V.N. Borsch ◽  
V.S. Yusupov ◽  
S.Ya. Zhuk ◽  
...  

1988 ◽  
Vol 53 (11) ◽  
pp. 2914-2919 ◽  
Author(s):  
Pierrette Maes ◽  
Annie Ricouart ◽  
Emmanuel Escher ◽  
André Tartar ◽  
Christian Sergheraert

Analogs of angiotensin II in which phenylalanine in position 8 was replaced with cymantrenylalanine or with its triphenylphosphine photosubstitution product were synthesized by the solid-phase method. On rabbit aorta strips, these peptides were found to be pure antagonists of angiotensin II. Their relative affinities are higher than most other analogs substituted in position 8 with bulky amino-acids.


1991 ◽  
Vol 56 (2) ◽  
pp. 491-498 ◽  
Author(s):  
Bernard Lammek ◽  
Izabela Derdowska ◽  
Tomasz M. Wierzba ◽  
Witold Juzwa

In an attempt to determine some of the structural features in position 1 that account for V1 antagonism, four new analogues of arginine-vasopressin were synthesized and the effect of the modifications on the vasoconstrictor activity was checked using isolated mesenteric arterial vessels of rats. The protected precursors required for these analogues were synthesized by a solid phase method of peptide synthesis. One of the reported analogues, namely [1-(4-mercapto-4-tetrahydrothiopyraneacetic acid)., 2-O-methyltyrosine, 8-arginine]vasopressin appears to be a potent competitive antagonist of the vasoconstrictor effect by AVP.


1981 ◽  
Vol 362 (2) ◽  
pp. 833-840 ◽  
Author(s):  
Eric ATHERTON ◽  
Willy HÜBSCHER ◽  
Robert C. SHEPPARD ◽  
Vivienne WOOLLEY

Sign in / Sign up

Export Citation Format

Share Document