scholarly journals Facile Synthesis of Mn0.68Bi0.32OCl Mix-Crystals And Its Supercapacitive Behavior

Author(s):  
Y.Z. Song ◽  
B.X. Qi ◽  
M.T. Li ◽  
J.M. Xie

Abstract Mn0.68Bi0.32OCl mix-crystals for supercapacitor were successfully synthesized via a facile solid-phase method using Bi(NO3)3 and MnCl2 with molar ratio of 1:1 as precursors. The Mn0.68Bi0.32OCl mix-crystals were characterized by scanning electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurements and thermogravimetry and differential scanning calorimetry, respectively. Cyclic voltammetry and galvanostatic charge/discharge technique were performed for the Mn0.68Bi0.32OCl mix-crystals in 1 M Na2SO4 aqueous solutions; the specific capacitance of Mn0.68Bi0.32OCl was about 203 F.g-1 at the current density of 3 A. g-1 with a long life time, owing to the high power density of Mn0.68Bi0.32OCl mix-crystals and the higher surface area, good conductivity, and high stability of the Mn0.68Bi0.32OCl mix-crystals.

2020 ◽  
Vol 3 (1) ◽  
pp. 28-39
Author(s):  
Esau Nii Abekah Akwetey Armah ◽  
Martin Egblewogbe ◽  
Hubert Azoda Koffi ◽  
Alfred Ato Yankson ◽  
Francis Kofi Ampong ◽  
...  

Powder samples of Zn1-xMnxO nanocrystal were synthesized at a temperature of 200 °C using solid phase method. Dopant concentrations of 0.005 ≤ x ≤ 0.5 were studied. Powder x-ray diffraction (PXRD) patterns of the samples were analyzed with a view of determining the onset of secondary phases, hence the solubility limit of the dopant. The solubility limit for Mn in ZnO samples synthesized at 200 °C is realized at x < 0.3. With a regular pattern in increment of the Mn concentration, there were variations observed in the trend of the relative intensity, 2θ position and d-spacing indicating uneven addition of Mn (thus Mn2+, Mn3+ or Mn4+).


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Limin Dong ◽  
Jian Li ◽  
Qin Li ◽  
Lianwei Shan ◽  
Zhidong Han

The SrxBa1−xTiO3: Eu3+, Gd3+phosphors are synthesized by high temperature solid-phase method. Multiple techniques including X-ray diffraction (XRD), and scanning electron microscopy (SEM) are used to examine the surface morphology and structural properties of SrxBa1−xTiO3: Eu3+, Gd3+phosphors. The optical properties are presented and discussed in terms of photoluminescence (PL) and photoluminescence excitation (PLE) spectra. The as-obtained SrxBa1−xTiO3: Eu3+, Gd3+phosphors show higher PL emission intensity (at 591, 611 nm). The peaks at 591 and 611 nm are attributed to Eu3+  5D0-7F1,5D0-7F2. Gd3+has a strong sensitization on Eu3+. A certain amount of Sr2+and Ba2+is contributed to the intensity of light emission. After being irradiated with blue light, the phosphor samples emit yellow light. This suggests its potential applications in many fields.


2016 ◽  
Vol 680 ◽  
pp. 208-211
Author(s):  
Lian Lian Wu ◽  
Qiang Li ◽  
Dan Yu Jiang ◽  
Jin Feng Xia

In this paper, La0.65Sr0.35MnO3 (LSM) oxide powder with ultrafine structure has been synthesized by self-propagating combustion method. The powders were characterized by X-ray diffraction, scanning electron microscopy and laser size analysis. Compared to the powders prepared by traditional solid-phase method, the grain size of powders prepared by self-propagating combustion method is relatively small and uniform. Starting from ultrafine LSM powders, sensing electrode (SE) for NO2 mixed-potential sensors based on yttria-stablized zirconia (YSZ) was fabricated. As-obtained NO2 sensor displays fast response and high sensitivity (25.4mV/decade). The response values of the sensor have good linear relationship with the logarithm of NO2 concentration varying from 30ppm to 500ppm.Keywords:Self-propagating combustion method; La0.65Sr0.35MnO3; NOx sensor; YSZ


2017 ◽  
Vol 64 (3-4) ◽  
pp. 155-162
Author(s):  
Aleksandra Gorączko ◽  
Andrzej Olchawa

AbstractThe paper presents results of a study on the amount of water associated with the solid phase of the clay water system at the plastic limit. Two model monomineral clays, namely kaolinite, and montmorillonite, were used in the study. The latter was obtained by gravitational sedimentation of Na-bentonite (Wyoming).The calculated mean number of water molecule layers on the external surface of montmorillonite was 14.4, and water in interlayer spaces constituted 0.3 of the water mass at the plastic limit.The number of water layers on the external surface of kaolinite particles was 63, which was related to the higher density of the surface electrical charge of kaolinite compared to that of montmorillonite.The calculations were made on the basis of the external surface area of clays and the basal spacing at the plastic limit measured by an X-ray diffraction test. The external surface area of clays was estimated by measuring sorption at a relative humidity p/p0 = 0.5.


2021 ◽  
Vol 103 (3) ◽  
pp. 67-73
Author(s):  
A.A. Toibek ◽  
◽  
K.T. Rustembekov ◽  
D.A. Kaikenov ◽  
M. Stoev ◽  
...  

For the first time, double gadolinium tellurites of the composition GdMIITeO4.5 (MII — Sr, Ba) were synthesized by the solid-phase method. The solid-phase synthesis of samples was carried out from decrepitated gadolinium (III) and tellurium (IV) oxides, strontium, and barium carbonates according to the standard ceramic technology. The synthesis was carried out in the temperature range of 800-1100 °C. The samples obtained were confirmed by X-ray phase analysis. X-ray phase analysis was carried out on an Empyrean instrument in the XRDML Pananalitical format. The intensity of the diffraction maxima was estimated on a 100-point scale. X-ray diffraction patterns indexing of the powder of gadolinium tellurites — alkaline earth metals studied were carried out by the homology method. The reliability and correctness of the results of indexing the X-ray diffraction patterns are confirmed by the good agreement between the experimental and calculated values of the interplanar distances (d) and the agreement between the values of the X-ray and pycnometric densities. It was found that compounds GdSrTeO4.5 and GdBaTeO4.5 crystallize in the monoclinic system and have the unit cell parameters, namely GdSrTeO4.5 — a = 12.7610, b = 10.4289, c = 8.6235 Å, V° = 1141.83 Å3, β = 95.77°, Z = 5, ρrent. = 3.22, ρpikn. = (3.10±0.09) g/cm3; GdBaTeO4.5 — a = 15.7272, b = 15.8351, c = 7.1393 Å, V° = 1769.72 Å3, β = 95.53°, Z = 8, ρrent = 3.71, ρpick = (3.61±0.10) g/cm3. Using the Landiya method, the standard heat capacities of the compounds were estimated from the calculated values of the standard entropies, and the temperature dependences of the heat capacities of the gadolinium tellurites synthesized were determined in the temperature range of 298–850 K.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2714
Author(s):  
Min Zuo ◽  
Boda Ren ◽  
Zihan Xia ◽  
Wenwen Ma ◽  
Yidan Lv ◽  
...  

In this article, the modification effects on Al–Mg2Si before and after heat treatment were investigated with Ca, Sb, and (Ca + Sb). In comparison with single Ca or Sb, the samples with composition modifiers (Ca + Sb) had the optimal microstructure. The sample with a molar ratio for Ca-to-Sb of 1:1 obtained relatively higher properties, for which the Brinell hardness values before and after heat treatment were remarkably increased by 31.74% and 28.93% in comparison with bare alloy. According to differential scanning calorimetry analysis (DSC), it was found that the nucleation behavior of the primary Mg2Si phase could be significantly improved by using chemical modifiers. Some white particles were found to be embedded in the center of Mg2Si phases, which were deduced to be Ca5Sb3 through X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM) analyses. Furthermore, Ca5Sb3 articles possess a rather low mismatch degree with Mg2Si particles based on Phase Transformation Crystallography Lab software (PTCLab) calculation, meaning that the efficient nucleation capability of Ca5Sb3 for Mg2Si particles could be estimated.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 843 ◽  
Author(s):  
Zhiyong Yu ◽  
Jishen Hao ◽  
Wenji Li ◽  
Hanxing Liu

Co-doped Li2MoO3 was successfully synthesized via a solid phase method. The impacts of Co-doping on Li2MoO3 have been analyzed by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) measurements. The results show that an appropriate amount of Co ions can be introduced into the Li2MoO3 lattices, and they can reduce the particle sizes of the cathode materials. Electrochemical tests reveal that Co-doping can significantly improve the electrochemical performances of the Li2MoO3 materials. Li2Mo0.90Co0.10O3 presents a first-discharge capacity of 220 mAh·g−1, with a capacity retention of 63.6% after 50 cycles at 5 mA·g−1, which is much better than the pristine samples (181 mAh·g−1, 47.5%). The enhanced electrochemical performances could be due to the enhancement of the structural stability, and the reduction in impedance, due to the Co-doping.


2018 ◽  
Vol 18 (1) ◽  
pp. 18 ◽  
Author(s):  
Normyzatul Akmal Abd Malek ◽  
Hamizah Mohd Zaki ◽  
Mohammad Noor Jalil

The interaction of Active Pharmaceutical Ingredient (API) with other compounds will affect drugs stability, toxicity, modified dissolution profiles or may form a new compound with the different crystal structure. Acetaminophenol (APAP), the most common drug used widely (also known as Panadol) was mixed with Naringenin (NR) to glance for a new phase of interactions leading to new compound phase. The amide-acid supramolecular heterosynthon; N-H…O interaction between acid and the respective base were observed in the APAP-NR mixture blends. The interaction was prepared by the binary interaction from neat grinding and liquid-assisted grinding techniques at a different stoichiometry of binary mixture ratio of APAP-NR which were 1:1, 1:2 and 2:1 molar ratio. The interaction was estimated using Group Contribution Method (GCM) and physicochemical properties were characterized by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), powder X-ray diffraction (PXRD) and Differential Scanning Calorimetry (DSC) analysis. The GCM calculation gave good interaction strength at 212.93 MPa1/2. The ATR-FTIR, DSC and PXRD results obtained revealed an interaction with new phase formed.


2020 ◽  
Vol 62 (2) ◽  
pp. 332
Author(s):  
Л.Т. Денисова ◽  
М.С. Молокеев ◽  
Л.А. Иртюго ◽  
В.В. Белецкий ◽  
Н.В. Белоусова ◽  
...  

SmGaGe2O7 has been prepared by solid-phase synthesis in air at temperatures from 1273 to 1473 K using the Sm2O3, Ga2O3, and GeO2 oxides as starting materials. The structure of the studied germanate was determined by X-ray diffraction (space group P2_1 / c; a = 7.18610(9) Angstrem, b = 6.57935(8) Angstrem, c = 12.7932(2) Angstrem). Its high-temperature heat capacity has been measured by differential scanning calorimetry. The obtained experimental dependence C_p = f (T) has been used to evaluate the thermodynamic properties of the compound.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012042
Author(s):  
M G Volkova ◽  
V Yu Storozhenko ◽  
V V Petrov ◽  
E M Bayan

Abstract Nanoscale TiO2-SnO2 films with the Ti:Sn ratio 1:99, 3:97 and 5:95 mol%, respectively, were obtained by solid-phase low-temperature pyrolysis method. The synthesized materials were studied by X-ray phase analysis and scanning electron microscopy (SEM) analysis. Regardless of the modified agents’ concentration, the structure of cassiterite was observed for all synthesized materials. When studying the effect of synthesis parameters on the materials properties, it was shown that both an increase in the Ti4+ concentration and in the calcination temperature leads to an increase in the particle size.


Sign in / Sign up

Export Citation Format

Share Document