Enhancing Mechanical Properties of Flexible Graphene/ Cellulose Conductive Paper by Chemically Modifying Cellulose Fibers

2018 ◽  
Vol 18 (10) ◽  
pp. 7090-7094
Author(s):  
Xinrong Xiao ◽  
Hongwei Zhang ◽  
Zhiqiang Fang ◽  
Qinwen Wang
Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2636
Author(s):  
Petr Valášek ◽  
Miroslav Müller ◽  
Vladimír Šleger ◽  
Viktor Kolář ◽  
Monika Hromasová ◽  
...  

Composite materials with natural fillers have been increasingly used as an alternative to synthetically produced materials. This trend is visible from a representation of polymeric composites with natural cellulose fibers in the automotive industry of the European Union. This trend is entirely logical, owing to a preference for renewable resources. The experimental program itself follows pronounced hypotheses and focuses on a description of the mechanical properties of untreated and alkali-treated natural vegetable fibers, coconut and abaca fibers. These fibers have great potential for use in composite materials. The results and discussion sections contribute to an introduction of an individual methodology for mechanical property assessment of cellulose fibers, and allows for a clear definition of an optimal process of alkalization dependent on the content of hemicellulose and lignin in vegetable fibers. The aim of this research was to investigate the influence of alkali treatment on the surface microstructure and tensile properties of coir and abaca fibers. These fibers were immersed into a 5% solution of NaOH at laboratory temperature for a time interval of 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h, and 48 h, rinsed and dried. The fiber surface microstructures before and after the alkali treatment were evaluated by SEM (scanning electron microscopy). SEM analysis showed that the alkali treatment in the NaOH solution led to a gradual connective material removal from the fiber surface. The effect of the alkali is evident from the visible changes on the surface of the fibers.


2011 ◽  
Vol 332-334 ◽  
pp. 489-495 ◽  
Author(s):  
Rong Zhou ◽  
Ming Xia Yang

Regenerated cellulose fiber is the most widely-used and most variety of cellulose fiber. Five categories and ten kinds of fibers such as lyocell fiber, modal fiber, bamboo pulp fiber, sheng-bast fiber, Outlast viscose fiber were chosen as the research object. The strength property and elasticity of fibers in dry and wet state were tested and analysis. The comprehensive performances of fabrics were studied and mechanical properties of the fibers were listed in the order from good to bad by grey clustering analysis. The results show lyocell G100 and lyocell LF have better comprehensive mechanical properties ,while other new regenerated cellulose fibers’ comprehensive mechanical properties are general. Among these fibers modal fiber’s comprehensive mechanical properties are slightly better than sheng-bast fibers’ and bamboo pulp fibers’. Modal fiber, sheng-bast fiber and Bamboo pulp fiber have no significantly poor single parameter and all of them have better comprehensive mechanical properties than various viscose fibers. Outlast viscose in which has been added phase change materials sensitive to temperature by Microcapsule techniques fundamentally keeps similar comprehensive mechanical properties with other regenerated cellulose fibers,but its properties decline slightly .


2021 ◽  
Vol 28 ◽  
Author(s):  
Bei He ◽  
Xinxin Liu ◽  
Shi Qi ◽  
Run Zheng ◽  
Minmin Chang ◽  
...  

Background: Cellulose, huge reserves of natural polymers, have been widely applied in pharmaceutical and biomedicine fields due to its good biocompatibility, biodegradability, non-toxicity and excellent mechanical properties. At present, water-resistant metal-based and petroleum-based materials applied in medical field exists obvious problems of poor biocompatibility and high cost. Therefore, water-resistant cellulose-based materials with good biocompatibility and low price will become an attractive alternative. This review aims to summarize the preparation of water-resistant cellulose-based materials and their potential application in pharmaceutical and biomedical in recent years. Methods: Common hydrophobic treatments of cellulose fibers or paper were overviewed. The preparation, properties and applications of water-resistant cellulose-based materials in the pharmaceutical and biomedical fields were summarized. Results: Common hydrophobic treatments of cellulose fibers or paper were divided into chemical modification (graft polymerization, crosslinking, solution casting or dip-coating), physico-chemical surface modifications (plasma treatments, surface patterning, electrostatic spraying and electrowetting) and physical processing (electrostatic spinning, SAS process and 3D EHD printing). These hydrophobically processed cellulose fibers or paper could be prepared into various water-resistant cellulose-based materials and applied in pharmaceutical excipients, drug-loaded amphiphilic micelles, drug-loaded composite fibers, hydrophobic biocomposite film/coatings and paper-based detectors. They presented excellent water resistance and biocompatibility, low cytotoxicity and high drug loading ability, and stable drug release rate, etc., which could be used for water-insoluble drugs carriers, wound dressings, and medical testing equipment. Conclusion: Currently, water-resistant cellulose-based materials were mainly applied in water-insoluble drugs delivery carriers, wound dressing and medical diagnosis and presented great application prospects. However, the contradiction between hydrophobicity and mechanical properties of these reported water-resistant cellulose-based materials limited their wider application in biomedicine such as tissue engineering. In the future, attention will be focused on the higher hydrophobicity of water-resistant cellulose-based materials with excellent mechanical properties. In addition, clinical medical research of water-resistant cellulose-based materials should be strengthened.


2018 ◽  
Vol 276 ◽  
pp. 248-253
Author(s):  
Jiří Zach ◽  
Jitka Peterková ◽  
Vítězslav Novák

The paper deals with the possibilities of using secondary raw materials in the development of new advanced lightweight plasters. It was about fibers from recycled waste materials (waste paper, PET bottles, tyres) and recycled insulation (stone wool). The aim of adding fibers to these lightweight building materials was improvement of mechanical properties, improvement thermal insulation properties and reduction of crack sensitivity. It can be stated, based on the evaluation of the selected measurements, that both types of cellulose fibers and fibers from recycled tyres had positive influence on the mechanical properties, namely in the case of compressive strength. From the point of view of thermal insulating properties, it can be said that only 2 types of fibers have reduced the value of the thermal conductivity. They were mixtures with stone fibers and with recycled tyres fibers. Both of these mixtures also showed the lowest average values of bulk density. Based on the carried out research works can be it concluded that the use of recycled tyres fibers show as optimal.


2020 ◽  
Vol 145 ◽  
pp. 112071 ◽  
Author(s):  
Denis Mihaela Panaitescu ◽  
Cristian Andi Nicolae ◽  
Augusta Raluca Gabor ◽  
Roxana Trusca

2019 ◽  
Vol 20 (3) ◽  
pp. 501-511
Author(s):  
Young Jae Lee ◽  
Sung Jun Lee ◽  
Sang Won Jeong ◽  
Hyun-chul Kim ◽  
Tae Hwan Oh ◽  
...  

2015 ◽  
Vol 30 (9) ◽  
pp. 1242-1254 ◽  
Author(s):  
Matheus Poletto ◽  
Ademir J Zattera

The mechanical and dynamic mechanical properties of cellulose fibers-reinforced polystyrene composites were investigated as a function of cellulose fiber content and coupling agent effect. The composites were prepared using a corotating twin-screw extruder and after injection molding. Three levels of filler loading (10, 20, and 30 wt%) and a fixed amount of coupling agent (2 wt%) were used. The results showed that a cellulose fiber loading of more than 20 wt% caused decrease in the mechanical properties. The addition of coupling agent substantially improves the mechanical and dynamic mechanical properties. The use of coupling agent improved the storage modulus and reduced the damping peak values of the composites due to the improved interfacial adhesion. The height of the damping peak was found to be dependent on the content of cellulose fiber and the interfacial adhesion between fiber and matrix. The adhesion factor values confirm that the better adhesion occurs when coupling agent is used.


1999 ◽  
Vol 30 (3) ◽  
pp. 349-359 ◽  
Author(s):  
G. Canché-Escamilla ◽  
J.I. Cauich-Cupul ◽  
E. Mendizábal ◽  
J.E. Puig ◽  
H. Vázquez-Torres ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document