Highly Efficient Adsorption of Anionic Dye on Acid-Treated Halloysite Nanotubes

2020 ◽  
Vol 20 (8) ◽  
pp. 5024-5027 ◽  
Author(s):  
Hyungwook Lee ◽  
Keonku Lee ◽  
Jongik Park ◽  
Jewon Lee ◽  
Jaegeun Noh

The adsorption capability of eosin Y as a model anionic dye on natural halloysite nanotubes (HNTs) and sulfuric acid-treated HNTs as a function of acid treatment time (1 h, 3 h, and 5 h) was examined. Scanning electron microscopy revealed that natural HNTs had a very uniform surface, whereas acid-treated HNTs had a rough surface with structural defects, which increased with acid treatment time. The total specific pore volume and total surface area of the acid-treated HNTs increased due to formation of nanopores in the HNTs via dissolution of the inner AlO6 octahedral layer. With acid treatment, the surface ξ—potentials were positively shifted from −42.9 mV (for the natural HNTs) to −1.9, −3.0, and +1.2 mV after 1, 3, and 5 h, respectively. The adsorption amount (qe) of eosin Y on natural HNTs and the three acid-treated HNTs was 2.3, 125.5, 118.9, and 118.9 mg g−1, respectively, implying that the adsorption capacity of acid-treated HNTs is ~50 times higher than that of natural HNTs. In this study, we clearly demonstrated that acid-treated HNTs can be used as highly efficient nanomaterials for removal of dyes from wastewater containing anionic dyes.

2019 ◽  
Vol 19 (11) ◽  
pp. 7178-7184 ◽  
Author(s):  
Xuteng Xing ◽  
Jihui Wang ◽  
Qiushi Li ◽  
Wenbin Hu

Halloysite nanotubes (HNTs) are natural clay minerals with a tubular structure. They have attracted considerable attention as a potential nanocontainer due to their abundance, biocompatibility and nontoxicity. In this study, HNTs were handled with H2SO4 at 70 °C. The morphology and structure of these acid-treated and original HNTs were investigated by scanning electron microscopy (SEM), energy dispersion spectrum (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), and their specific surface area was determined by automatic gas adsorption analyzer. The loading efficiency and release behavior of acid-treated HNTs for 2-Mercaptobenzothiazole (MBT) were investigated by UV-vis spectrophotometer. Results show that acid-treated HNTs retained their tubular structure, but their internal diameter expanded by 35–37 nm after 32 h of acid treatment. After 72 h of acid treatment, HNTs can be transferred into amorphous silica nanotubes. Moreover, the specific surface area of these HNTs samples initially increased with the increase in acid treatment time but then started to decrease after 32 h. The specific surface area of acid-treated HNTs at 32 h can reach 251.6 m2/g, which was much higher than that for untreated HNTs (55.3 m2/g). In addition, the loading capacity of acid-treated HNTs can reach 32.1% for HNTs-32, which is about three times higher than that of original HNTs. The acid treatment has slight effect on the release behavior.


RSC Advances ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 408-414 ◽  
Author(s):  
Chang-An Wang ◽  
Yan-Wei Li ◽  
Xue-Li Cheng ◽  
Jian-Ping Zhang ◽  
Yin-Feng Han

Eosin Y dye has been successfully embedded into a nanoporous network EY-POPs through a bottom-up strategy. The polymers could be used as highly effective and reusable heterogeneous organo-photocatalyst for the dehydrogenative coupling reaction.


2013 ◽  
Vol 699 ◽  
pp. 735-741 ◽  
Author(s):  
Ambali Saka Abdulkareem ◽  
Edison Muzenda ◽  
Ayo Samuel Afolabi

Acid treatment is one of the cheapest techniques and least applicable processes in the recycling of used lubricating oils. In this work, the performance of sulphuric acid in the treatment used oil was studied. The effects of the critical treatment parameters (acid volume, concentration of the acid, treatment temperature, stirring time and treatment time) were investigated by varying one treatment parameter at a time and analysing metal content in the sample of the treated oil using atomic absorption spectrometry (ASS). Thereafter, an optimal solution was determined by the combination of the optimum values of each treatment parameters. The original conventional treatment parameter values, resulted in 13.2 ppm and thereafter was optimised to 11 ppm this showed a definite improvement in efficiency. This result is also comparable to other data obtained in previously studied work which employed the same conventional treatment parameters. The optimal solution is within 10% variation as compared the standard individual metal content which ranges 0-10 ppm.


2007 ◽  
Vol 124-126 ◽  
pp. 1031-1034
Author(s):  
Bong Soo Jin ◽  
Bok Ki Min ◽  
Chil Hoon Doh

To find out suitable Si surface treatment and heat treatment conditions, acid treatment of Si wafer was done for lithium polysilicate electrolyte coating on Si wafer. In case of HCl treatment, the wet angle of a sample is 30o, which is the smallest wet angle of other acid in this experiment. Acid treatment time is 10 min, which is no more change of wet angle. Lithium polysilicate electrolyte was synthesized by hydrolysis and condensation of lithium silicate solution using perchloric acid. Thermal analysis of lithium polysilicate electrolyte shows the weight loss of ~23 % between 400 and 500 , which is due to the decomposition of LiClO4. The XRD patterns of the obtained lithium polysilicate electrolyte also show the decrement of LiClO4 peak at 400 . The optimum heat treatment temperature is below 400 , which is the suitable answer for lithium polysilicate electrolyte.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3536
Author(s):  
Indra Surya ◽  
Kamaruddin Waesateh ◽  
Abdulhakim Masa ◽  
Nabil Hayeemasae

Halloysite Nanotubes (HNT) are chemically similar to clay, which makes them incompatible with non-polar rubbers such as natural rubber (NR). Modification of NR into a polar rubber is of interest. In this work, Epoxidized Natural Rubber (ENR) was prepared in order to obtain a composite that could assure filler–matrix compatibility. However, the performance of this composite was still not satisfactory, so an alternative to the basic HNT filler was pursued. The surface area of HNT was further increased by etching with acid; the specific surface increased with treatment time. The FTIR spectra confirmed selective etching on the Al–OH surface of HNT with reduction in peak intensity in the regions 3750–3600 cm−1 and 825–725 cm−1, indicating decrease in Al–OH structures. The use of acid-treated HNT improved modulus, tensile strength, and tear strength of the filled composites. This was attributed to the filler–matrix interactions of acid-treated HNT with ENR. Further evidence was found from the Payne effect being reduced to 44.2% through acid treatment of the filler. As for the strain-induced crystallization (SIC) in the composites, the stress–strain curves correlated well with the degree of crystallinity observed from synchrotron wide-angle X-ray scattering.


2005 ◽  
Vol 20 (12) ◽  
pp. 3368-3373 ◽  
Author(s):  
S.A. Curran ◽  
J.A. Talla ◽  
D. Zhang ◽  
D.L. Carroll

We systematically introduced defects onto the body of multi-walled carbon nanotubes through an acid treatment, and the evolution of these defects was examined by Raman spectroscopy using different excitation wavelengths. The D and D′ modes are most prominent and responsive to defect formation caused by acid treatment and exhibit dispersive behavior upon changing the excitation wavelengths as expected from the double resonance Raman (DRR) mechanism. Several weaker Raman resonances including D″ and L1 (L2) + D′ modes were also observed at the lower excitation wavelengths (633 and 785 nm). In addition, specific structural defects including the typical pentagon-heptagon structure (Stone–Wales defects) were identified by Raman spectroscopy. In a closer analysis we also observed Haeckelite structures, specifically Ag mode response in R5,7 and O5,6,7.


Sign in / Sign up

Export Citation Format

Share Document