Characteristics of the Micro-Nanopore System in a Pelitic Dolomite Reservoir: A Case Study of the Lower Cretaceous Xiagou Formation in the Qingxi Depression Based on Nuclear Magnetic Resonance Experiments

2021 ◽  
Vol 21 (1) ◽  
pp. 438-449
Author(s):  
Weifeng Sun ◽  
Wei Ju ◽  
Yan Song ◽  
Yong Qin

The Lower Cretaceous Xiagou Formation is an important tight oil reservoir in the Qingxi Depression of the Jiuxi Basin. The micro-nanopore system within the reservoir requires a comprehensive analysis to improve the production of tight oil there. Nuclear magnetic resonance (NMR) experiments have been widely used for the petrophysical characterization of sandstones and carbonates. In the present study, the NMR experiment was applied to obtain the characteristics of the micro-nanopore system and permeability in the Lower Cretaceous Xiagou pelitic dolomite reservoir. According to the distribution shape of the transversal relaxation time (T2) obtained under the 100% water-saturated condition (Sw), the samples are divided into four groups: (i) group I, two obvious peaks (P1 and P2); (ii) group II, an obvious high peak of P1 at 0.1˜1.0 ms and a relatively low peak of P2; (iii) group III, an obvious high peak of P2 and a relatively low peak of P1; and (iv) group IV, three peaks. In general, the distribution shape of T2 under the initial condition (Sini) is unimodal, with all its peaks lower than those under the Sw condition. The NMR T2 spectrum reflects the distribution of the rock pore radius. Most of the pore radius distributions are bimodal, and the main pore radius ranges from 10 nm to 70 nm. Three patterns can be identified and determined based on the distribution of the pore radius: I—unimodal distribution, II—bimodal distribution and III—trimodal distribution. The results indicate that the porosity in the Xiagou reservoir ranges from 1.17% to 6.89%, with an average of 3.33%. The permeability ranges from 0.03×10−3 μm2 to 22.56×10−3 μm2, with an average of 2.95×10−3 μm2.

SPE Journal ◽  
2010 ◽  
Vol 16 (02) ◽  
pp. 223-238 ◽  
Author(s):  
Chanh Cao Minh ◽  
Padmanabhan Sundararaman

Summary We discuss the use of nuclear-magnetic-resonance (NMR) logging in the petrophysical evaluation of thin sand/shale laminations. NMR helps detect thin beds, determine fluid type, establish the hydrocarbon type and volume if hydrocarbon is present, and, finally, determine the permeability of the sand layers (as opposed to that of the sand/shale system). Experiments were conducted on samples of 100% sand, 100% clay, and sand/clay layers with an NMR-logging tool at surface to verify the characteristic T2 bimodal relaxation distribution often observed in NMR logs that are acquired in thin beds. From the bimodal distribution, it is often possible to determine a cutoff to separate the productive sand layers from the shale layers and, with it, the porosity fraction of each component. Subsequently, the sand fraction, or net/gross ratio, can be estimated assuming that the 100%-sand porosity is known. Because gas, oil, and water have different NMR properties, fluid-typing techniques such as 2D NMR offer useful insights into the fluid type and properties in thin-layer sands. Because the laminations thickness is often less than the antenna aperture, the estimated permeability of the sand/ shale system will undercall the true permeability of the sand layers only. In this case, their permeability can be estimated quickly from Darcy's fluid-flow model. We show examples of thin sand/shale laminations that are oil-bearing and gas-bearing. In each case, the NMR detection was verified against borehole-imaging logs, and the fluid type in the sands was determined from multidimensional NMR analysis. The derived hydrocarbon volume was then compared with the results estimated from a triaxial induction tool. Permeability of the sand layers was also computed and compared to that of nearby thick sands. Core data in one well was used to validate NMR detection, porosity, permeability, and net sand thickness.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2836 ◽  
Author(s):  
Ting Chen ◽  
Zhengming Yang ◽  
Yutian Luo ◽  
Wei Lin ◽  
Jiaxiang Xu ◽  
...  

In order to evaluate the displacement effect of four kinds of injection media in tight oil sandstone, water, active water, CO2, N2 flooding experiments were carried out in laboratory. Online Nuclear Magnetic Resonance (NMR) spectrometers combine the advantages of NMR technology and core displacement experiments. In the displacement experiment, NMR data of different injection volumes were obtained and magnetic resonance imaging (MRI) was carried out. The results showed that micro and sub-micropores provided 62–97% of the produced crude oil. The enhanced oil recovery ratio of active water flooding was higher than that of conventional water flooding up to 10%. The recovery ratio of gas flooding in micro and sub-micropores was 60–70% higher than that of water flooding. The recovery ratio of CO2 flooding was 10% higher than that of N2 flooding. The remaining oil was mainly distributed in pores larger than 0.1 μm. Under the same permeability level, the remaining oil saturation of cores after gas flooding was 10–25% lower than water flooding. From MRI images, the displacement effects from good to bad were as follows: CO2 flooding, N2 flooding, active water flooding, and conventional water flooding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huanquan Sun ◽  
Haitao Wang ◽  
Zengmin Lun

AbstractCO2 EOR (enhanced oil recovery) will be one of main technologies of enhanced unconventional resources recovery. Understanding effect of permeability and fractures on the oil mobilization of unconventional resources, i.e. tight oil, is crucial during CO2 EOR process. Exposure experiments based on nuclear magnetic resonance (NMR) were used to study the interaction between CO2 and tight oil reservoirs in Chang 8 layer of Ordos Basin at 40 °C and 12 MPa. Effect of permeability and fractures on oil mobilization of exposure experiments were investigated for the different exposure time. The oil was mobilized from matrix to the surface of matrix and the oil recovery increased as the exposure time increased. The final oil recovery increased as the core permeability increased in these exposure experiments. Exposure area increased to 1.75 times by fractures resulting in that oil was mobilized faster in the initial stage of exposure experiment and the final oil recovery increased to 1.19 times from 28.8 to 34.2%. This study shows the quantitative results of effect of permeability and fractures on oil mobilization of unconventional resources during CO2 EOR, which will support CO2 EOR design in Chang 8 layer of Ordos Basin.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3114 ◽  
Author(s):  
Xiangrong Nie ◽  
Junbin Chen

Spontaneous imbibition of water into tight oil reservoirs is considered an effective way to improve tight oil recovery. We have combined testing techniques such as nuclear magnetic resonance, mercury injection capillary pressure, and magnetic resonance imaging to reveal the distribution characteristics of oil and water during the spontaneous imbibition process of tight sandstone reservoir. The experimental results were used to describe the dynamic process of oil–water distribution at the microscopic scale. The water phase is absorbed into the core sample by micropores and mesopores under capillary forces that dry away the original oil phase into the hydraulically connected macropores. The oil phase entering the macropores will drive away the oil in place and expel the original oil from the macropores. The results of magnetic resonance imaging clearly show that the remaining oil accumulates in the central region of the core because a large amount of water is absorbed in the late stage of spontaneous imbibition, and the water in the pores gradually connects to form a “water shield” that blocks the flow of the oil phase. We propose the spontaneous imbibition pathway, which can effectively explain the internal mechanisms controlling the spontaneous imbibition rate. The surface of the core tends to form many spontaneous imbibition pathways, so the rate of spontaneous imbibition is fast. The deep core does not easily form many spontaneous imbibition pathways, so the rate of spontaneous imbibition is slow. This paper reveals the pore characteristics and distribution of oil and water during the spontaneous imbibition process, which is of significance for the efficient development of tight oil.


Sign in / Sign up

Export Citation Format

Share Document