Micro-Nanoscale Characteristics of Pyrite and Its Implications for Gold Mineralization: Two Cases of Gold Deposits in the Youjiang Basin and Southwestern Tianshan Mountains

2021 ◽  
Vol 21 (1) ◽  
pp. 246-261
Author(s):  
Hongye Feng ◽  
Yiwen Ju ◽  
Bo Chen ◽  
Weixuan Fang ◽  
Hongjian Zhu ◽  
...  

The mineralogical and compositional characteristics of gold-bearing minerals and the occurrence of gold are not only of great significance to exploring the sources of ore-forming materials and their formation mechanisms but also helpful for designing reasonable beneficiations and smelting schemes and achieving remarkable economic benefits. This paper presents an integrated study on the crystal characteristics, elemental composition and distribution of pyrite (the main gold-bearing minerals), on the basis of electron probe microanalysis (EPMA), scanning electron microscopy (SEM), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and nano-secondary ion mass spectrometry (NanoSIMS). The occurrence of gold in the Shuiyindong gold deposit and Ashawayi gold deposit has been studied by means of microscopy, SEM, and EPMA images, elemental correlations, S–Fe–As ternary diagrams, logAs–logAu diagrams and Au/As ratios. The gold in pyrite of the Shuiyindong deposit is in the form of nano gold inclusions and lattice gold. The gold in pyrite of the Ashawayi deposit dominantly exists in the form of nano gold inclusions or is present as micro-nano gold particles in the cracks or edges of pyrite, some of which can exist as lattice gold. The ore-forming hydrothermal solution of the Shuiyindong gold deposit is mainly underground hot brine, but it may be reformed by a deep magmatic hydrothermal solution or volcanic-subvolcanic hydrothermal solution. The ore-forming hydrothermal solution of the Ashawayi gold deposit is mainly derived from the metamorphic hydrothermal solution formed during the orogenic process, and the ore-forming process or post-mineralization process may be reformed by the leaching of underground hot brine. Finally, the characteristics of ore-forming fluids and evolution of the two types of deposits are determined via pyrite element surface scanning. This paper shows that micro-nanoscale study of gold-bearing pyrite is of great significance to understanding the gold mineralization process and is worth further study.

2021 ◽  
Author(s):  
Wei Gao ◽  
Ruizhong Hu ◽  
Albert H. Hofstra ◽  
Qiuli Li ◽  
Jingjing Zhu ◽  
...  

Abstract The Youjiang basin on the southwestern margin of the Yangtze block in southwestern China is the world’s second largest Carlin-type gold province after Nevada, USA. The lack of precise age determinations on gold deposits in this province has hindered understanding of their genesis and relation to the geodynamic setting. Although most Carlin-type gold deposits in the basin are hosted in calcareous sedimentary rocks, ~70% of the ore in the Badu Carlin-type gold deposit is hosted by altered and sulfidized dolerite. Although in most respects Badu is similar to other Carlin-type gold deposits in the province, alteration of the unusual dolerite host produced hydrothermal rutile and monazite that can be dated. Field observations show that gold mineralization is spatially associated with, but temporally later than, dolerite. In situ secondary ion mass spectrometry (SIMS) U-Pb dating on magmatic zircon from the least altered dolerite yielded a robust emplacement age of 212.2 ± 1.9 Ma (2σ, mean square of weighted deviates [MSWD] = 0.55), providing a maximum age constraint on gold mineralization. The U-Th/He ages of detrital zircons from hydrothermally mineralized sedimentary host rocks at Badu and four other Carlin-type gold deposits yielded consistent weighted mean ages of 146 to 130 Ma that record cooling from a temperature over 180° to 200°C and place a lower limit on the age of gold mineralization in the basin. Hydrothermal rutile and monazite that are coeval with gold mineralization have been identified in the mineralized dolerite. Rutile is closely associated with hydrothermal ankerite, sericite, and gold-bearing pyrite. It has high concentrations of W, Fe, V, Cr, and Nb, as well as growth zones that are variably enriched in W, Fe, Nb, and U. Monazite contains primary two-phase fluid inclusions and is intergrown with gold-bearing pyrite and hydrothermal minerals. In situ SIMS U-Pb dating of rutile yielded a Tera-Wasserburg lower intercept age of 141.7 ± 5.8 Ma (2σ, MSWD = 1.04) that is within error of the in situ SIMS Th-Pb age of 143.5 ± 1.4 Ma (2σ, MSWD = 1.5) on monazite. These ages are ~70 m.y. younger than magmatic zircons in the host dolerite and are similar to the aforementioned U-Th/He cooling ages on detrital zircons from hydrothermally mineralized sedimentary host rocks. We, therefore, conclude that the Badu Carlin-type gold deposit formed at ca. 144 Ma. The agreement of the rutile and monazite ages with the U-Th-He cooling ages of Badu and four other Carlin-type gold deposits in the Youjiang basin suggests that ca. 144 Ma is representative of a regional Early Cretaceous Carlin-type hydrothermal event formed during back-arc extension.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 399 ◽  
Author(s):  
Zheng ◽  
Yang ◽  
Gao ◽  
Chen ◽  
Liu ◽  
...  

The Nibao gold deposit, which includes both fault-controlled and strata-bound gold orebodies, constitutes an important part of the Yunnan–Guizhou–Guangxi “Golden Triangle” region. Defining the mineralization age of these gold orebodies may provide additional evidence for constraining the formation ages of low-temperature orebodies and their metallogenic distribution in South China. Petrographic studies of gold-bearing pyrites and ore-related quartz veins indicate that these pyrites coexist with quartz or filled in vein-like quartz, which suggests a possible genetic relationship between the two from Nibao gold deposit. Minerals chemistry shows that Rb and Sr are usually hosted in fluid inclusions in quartz ranging from 0.0786 to 2.0760 ppm and 0.1703 to 2.1820 ppm, respectively. The Rb–Sr isotopic composition of gold-bearing quartz-hosted fluid inclusions from the Nibao gold deposit were found to have Rb–Sr isochron ages of 142 ± 3 and 141 ± 2 Ma for both fault-controlled and strata-bound orebodies, respectively, adding more evidence to previous studies and thus revealing a regional gold mineralization age of 148–134 Ma. These results also confirm the Middle-Late Yanshanian mineralizing events of Carlin-type gold deposits in Yunnan, Guizhou, and Guangxi Provinces of Southwest China. In addition, previous studies indicated that antimony deposits in the region which were formed at ca. 148–126 Ma have a close affinity with gold deposits. This illustrates that the regional low-temperature hydrothermal gold mineralization is related in space and time to the Yanshanian (ca. 146–115 Ma) magmatic activity. Specifically, the large-scale gold and antimony mineralization are considered to be inherently related to mantle-derived mafic and ultramafic magmatic rocks associated with an extensional tectonic environment. Based on the initial 87Sr/86Sr ratios of 0.70844 ± 0.00022 (2σ) and 0.70862 ± 0.00020 (2σ) for gold-bearing quartz veins from fault-controlled and strata-bound gold orebodies, respectively, at the Nibao gold deposit, as well as the C, H, O, and S isotopic characteristics of gold deposits located in the Golden Triangle region, we suggest that the mantle-derived material can be involved in the formation of the Nibao gold deposit and that the ore-forming fluid can be derived from a mixed crust–mantle source.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1066
Author(s):  
Damien Gaboury ◽  
Dominique Genna ◽  
Jacques Trottier ◽  
Maxime Bouchard ◽  
Jérôme Augustin ◽  
...  

The Perron deposit, an Archean orogenic gold deposit located in the Abitibi belt, hosts a quartz vein-type gold-bearing zone, known as the high-grade zone (HGZ). The HGZ is vertically continuous along >1.2 km, and is exceptionally rich in visible gold throughout its vertical extent, with grades ranging from 30 to 500 ppm. Various hypotheses were tested to account for that, such as: (1) efficient precipitating mechanisms; (2) gold remobilization; (3) particular fluids; (4) specific gold sources for saturating the fluids; and (5) a different mineralizing temperature. Host rocks recorded peak metamorphism at ~600 °C based on an amphibole geothermometer. Visible gold is associated with sphalerite (<5%) which precipitated at 370 °C, based on the sphalerite GGIMFis geothermometer, during late exhumation of verticalized host rocks. Pyrite chemistry analyzed by LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) is comparable to classical orogenic gold deposits of the Abitibi belt, without indication of a possible magmatic fluid and gold contribution. Comparison of pyrite trace element signatures for identifying a potential gold source was inconclusive to demonstrate that primary base-metal rich volcanogenic gold mineralization, dispersed in the host rhyolitic dome, could be the source for the later formation of the HGZ. Rather, nodular pyrites in graphitic shales, sharing similar trace element signatures with pyrite of the HGZ, are considered a potential source. The most striking outcome is the lack of water in the mineralizing fluids, implying that gold was not transported under aqueous complexes, even if fugacity of sulfur (−6) and oxygen (−28), and pH (~7) are providing the best conditions at a temperature of 350 °C for solubilizing gold in water. Fluid inclusions, analyzed by solid-probe mass spectrometry, are rather comparable to fossil gas composed mostly of hydrocarbons (methane and ethane and possibly butane and propane and other unidentified organic compounds), rich in CO2, with N2 and trace of Ar, H2S, and He. It is interpreted that gold and zinc were transported as hydrocarbon-metal complexes or as colloidal gold nanoparticles. The exceptional high content of gold and zinc in the HGZ is thus explained by the higher transporting capacity of these unique mineralizing fluids.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 235 ◽  
Author(s):  
Hinyuen Tsang ◽  
Jingya Cao ◽  
Xiaoyong Yang

The Chaoyangzhai gold deposit is one of the newly discovered medium to large scale turbidite-hosted gold deposits in Southeast Guizhou, South China. In this study, laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) zircon U–Pb dating on the tuffaceous- and sandy-slates of Qingshuijiang Formation, Xiajiang Group, and gold-bearing quartz vein yielded similar age distributions, indicating that zircon grains in gold-bearing quartz vein originated from the surrounding tuffaceous- and sandy-slates. In addition, the youngest weighted mean ages of the zircon grains from the tuffaceous- and sandy-slates were 775 ± 13 Ma and 777 ± 16 Ma, respectively, displaying that the tuffaceous- and sandy-slates of the Qingshuijiang Formation were likely deposited in Neoproterozoic. Based on their major and trace element compositions, the tuffaceous- and sandy-slates were sourced from a felsic igneous provenance. The sandy slates have higher contents of Au (mostly ranging from 0.019 to 0.252 ppm), than those of the tuffaceous slates (mostly lower than 0.005 ppm). The δ34SV-CDT values of pyrite and arsenopyrite of the gold-bearing samples range from +8.12‰ to +9.99‰ and from +9.78 to +10.78‰, respectively, indicating that the sulfur source was from the metamorphic rocks. Together with the evidence of similar geochemical patterns between the tuffaceous- and sandy-slates and gold-bearing quartz, it is proposed that the gold might be mainly sourced from sandy slates. The metamorphic devolatilization, which was caused by the Caledonian orogeny (Xuefeng Orogenic Event), resulted in the formation of the ore-forming fluid. Gold was likely deposited in the fractures due to changes of the physico-chemical conditions, leading to the formation of the Chaoyangzhai gold deposit, and the large-scale gold mineralization in Southeast Guizhou.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 448 ◽  
Author(s):  
Shun-Da Li ◽  
Zhi-Gao Wang ◽  
Ke-Yong Wang ◽  
Wen-Yan Cai ◽  
Da-Wei Peng ◽  
...  

The Jinchang gold deposit is located in the eastern Yanji–Dongning Metallogenic Belt in Northeast China. The orebodies of the deposit are hosted within granite, diorite, and granodiorite, and are associated with gold-mineralized breccia pipes, disseminated gold in ores, and fault-controlled gold-bearing veins. Three paragenetic stages were identified: (1) early quartz–pyrite–arsenopyrite (stage 1); (2) quartz–pyrite–chalcopyrite (stage 2); and (3) late quartz–pyrite–galena–sphalerite (stage 3). Gold is hosted predominantly within pyrite. Pyrite separated from quartz–pyrite–arsenopyrite cement within the breccia-hosted ores (Py1) yield a Re–Os isochron age of 102.9 ± 2.7 Ma (MSWD = 0.17). Pyrite crystals from the quartz–pyrite–chalcopyrite veinlets (Py2) yield a Re–Os isochron age of 102.0 ± 3.4 Ma (MSWD = 0.2). Pyrite separated from quartz–pyrite–galena–sphalerite veins (Py3) yield a Re–Os isochron age of 100.9 ± 3.1 Ma (MSWD = 0.019). Re–Os isotopic analyses of the three types of auriferous pyrite suggest that gold mineralization in the Jinchang Deposit occurred at 105.6–97.8 Ma (includes uncertainty). The initial 187Os/188Os values of the pyrites range between 0.04 and 0.60, suggesting that Os in the pyrite crystals was derived from both crust and mantle sources.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 250
Author(s):  
Chuanpeng Liu ◽  
Wenjie Shi ◽  
Junhao Wei ◽  
Huan Li ◽  
Aiping Feng ◽  
...  

The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt.


Author(s):  
V. Mykhailov ◽  
А. Tots

Tanzania is one of the leading gold mining countries in the world and the discovery of new gold resources on its territory is an actual task. Known gold deposits are concentrated mainly in the northwest of the country, in the metallogenic zone of Lake Victoria, where they are associated with the Archean greenstone belts, and to a lesser extent – in the southwest, in the ore regions of Lupa and Mpanda, confined to the Ubendian Paleoproterozoic mobile belt. With regard to the eastern regions of Tanzania, where the Proterozoic structures of the Uzagaran mobile belt are developed, until recently in this region any significant manifestations of gold mineralization were not known. As a result of our research in the northern part of the Morogoro province of the Republic of Tanzania, a new previously unknown gold deposit Mananila was discovered. It is represented by a large volume, up to 400–450 m long, up to 60–80 m thick, mineralized shear zone over intensely leached and schistosed migmatites, gneisses, amphibolites, penetrated by echelon systems of quartz veins and veinlet, steeply dipping bodies of quartz breccia up to 1.0–1.5 m thick. Gold contents range from 0.61 to 8.11 g/t, the average zone content is 2.5–3.0 g/t. Parallel to the main zone, similar structures are developed on the site, although they are of lower thickness. The forecast resources of the deposit are estimated at 20 tons of gold. 2.8 km to the east from the Mananila field, the recently discovered Mazizi gold deposit is located, and a number of small occurrences of gold are also known in the region. All these objects are located within a large shear zone of the northeastern strike, up to 4–5 km width, over 20 km in length. This serves as the basis for the identification of a new gold ore region in the northern part of the Morogoro province of the United Republic of Tanzania, within the Proterozoic mobile belt of Usagaran, the possible gold content of which has never been previously discussed in geological literature.


2008 ◽  
Vol 72 (4) ◽  
pp. 953-970 ◽  
Author(s):  
T. Oberthür ◽  
T. W. Weiser

AbstractGold mineralization at the Viceroy Mine is hosted in extensional veins in steep shear zones that transect metabasalts of the Archaean Arcturus Formation. The gold mineralization is generally made up of banded or massive quartz carrying abundant coarse arsenopyrite. However, most striking is a distinct suite of Au-Bi-Te-S minerals, namely joseite-A (Bi4TeS2), joseite-B (Bi4Te2S), hedleyite (Bi7Te3), ikunolite (Bi4S3), ‘protojoseite’ (Bi3TeS), an unnamed mineral (Bi6Te2S), bismuthinite (Bi2S3), native Bi, native gold, maldonite (Au2Bi), and jonassonite (AuBi5S4). The majority of the Bi-Te-S phases is characterized by Bi/(Se+Te) ratios of >1. Accordingly, this assemblage formed at reduced conditions at relatively low fS2 and fTe2. Fluid-inclusion thermometry indicates depositional temperatures of the main stage of mineralization of up to 342°C, in the normal range of mesothermal, orogenic gold deposits worldwide. However, melting temperatures of Au-Bi-Te phases down to at least 235°C (assemblage (Au2Bi + Bi + Bi7Te3)) imply that the Au-Bi-Te phases have been present as liquids or melt droplets. Furthermore, the close association of native gold, native bismuth and other Bi-Te-S phases suggests that gold was scavenged from the hydrothermal fluids by Bi-Te-S liquids or melts. It is concluded that a liquid/melt-collecting mechanism was probably active at Viceroy Mine, where the distinct Au-Bi-Te-S assemblage either formed late as part of the main, arsenopyrite-dominated mineralization, or it represents a different mineralization event, related to rejuvenation of the shear system. In either case, some of the gold may have been extracted from pre-existing, gold-bearing arsenopyrite by Bi-Te-S melts, thus leading to an upgrade of the gold ores at Viceroy. The Au-Bi-Te-S assemblage represents an epithermal-style mineralization overprinted on an otherwise mesothermal (orogenic) gold mineralization.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
T. Yarboboev ◽  
Sh. Sultanov ◽  
I. Ochilov

Analysis of the available information and the results of many years of research on gold deposits in Uzbekistan made it possible to identify the main unconventional types of deposits. Among them, the most interesting are apocarbonate, crustal, sulfide-carbonaceous and apovolcanogenic quartzite (Upper-Kattakashkasai ore occurrence). The apocarbonate type is widespread in Uzbekistan, has been studied in sufficient detail and information is provided on it in this article. The article examines the existence, distribution and genesis of ores of Karlin type gold deposits. The generalizing characteristics of the Karlin type gold mineralization are given. The issues of geochemical specialization of the Paleozoic strata of the Chakylkalyan megablock are considered, the most favorable stratolevel for the localization of mineralized zones is determined, and the features of carbonate rocks in the process of gold deposition during reactions with silicic solutions are characterized. Based on the materials of regional geochemical profiling, the behavior of the main ore-forming elements in the rocks of both carbonate and volcanogenic-terrigenous strata is analyzed. As a result of the analysis, subclarkic contents of the main ore-forming elements (As, Co, Ni, Pb, Cu, Ag, V, Cr, Sc) were revealed, which create increased concentrations in gold-bearing pyrites of both apocarbonate gold mineralization and related formations.


Author(s):  
Kai Zhao ◽  
Huazhou Yao ◽  
Jianxiong Wang ◽  
Ghebsha Fitwi Ghebretnsae ◽  
Wenshuai Xiang ◽  
...  

The Koka gold deposit is located in the Elababu shear zone between the Nakfa terrane and the Adobha Abiy terrane, NW Eritrea. Based on the paragenetic study two main stages of gold mineralization were identified in the Koka gold deposit: 1) an early stage of pyrite-chalcopyrite-sphalerite-galena-gold-quartz vein; and 2) a second stage of pyrite-quartz veins. NaCl-aqueous inclusions, CO2-rich inclusions, and three-phase CO2-H2O inclusions occur in the quartz veins at Koka. The ore-bearing quartz veins formed at 268℃, from NaCl-CO2-H2O(-CH4) fluids averaging 5 wt% NaCl eq. The ore-forming mechanisms include fluid immiscibility during stage I, and mixing with meteoric water during stage II. Oxygen, hydrogen and carbon isotopes suggest that the ore-forming fluids originated as mixtures of metamorphic water, meteoric water and magmatic water, whereas sulfur isotope suggest an igneous origin. Features of geology and ore-forming fluid at Koka deposit are similar to those of orogenic gold deposits, suggesting the Koka deposit might be an orogenic gold deposit related to granite.


Sign in / Sign up

Export Citation Format

Share Document