scholarly journals Role of the Environment in the Placement of Apocarbonate Gold Mineralization Chakylkalyan Megablock (Southern Uzbekistan)

2021 ◽  
Vol 7 (6) ◽  
Author(s):  
T. Yarboboev ◽  
Sh. Sultanov ◽  
I. Ochilov

Analysis of the available information and the results of many years of research on gold deposits in Uzbekistan made it possible to identify the main unconventional types of deposits. Among them, the most interesting are apocarbonate, crustal, sulfide-carbonaceous and apovolcanogenic quartzite (Upper-Kattakashkasai ore occurrence). The apocarbonate type is widespread in Uzbekistan, has been studied in sufficient detail and information is provided on it in this article. The article examines the existence, distribution and genesis of ores of Karlin type gold deposits. The generalizing characteristics of the Karlin type gold mineralization are given. The issues of geochemical specialization of the Paleozoic strata of the Chakylkalyan megablock are considered, the most favorable stratolevel for the localization of mineralized zones is determined, and the features of carbonate rocks in the process of gold deposition during reactions with silicic solutions are characterized. Based on the materials of regional geochemical profiling, the behavior of the main ore-forming elements in the rocks of both carbonate and volcanogenic-terrigenous strata is analyzed. As a result of the analysis, subclarkic contents of the main ore-forming elements (As, Co, Ni, Pb, Cu, Ag, V, Cr, Sc) were revealed, which create increased concentrations in gold-bearing pyrites of both apocarbonate gold mineralization and related formations.

1990 ◽  
Vol 27 (4) ◽  
pp. 477-493 ◽  
Author(s):  
Robert P. Shaw ◽  
Roger D. Morton

Gold-bearing quartz veins were recently discovered in archimetamorphic quartzite–rudite and quartzite–pelite sequences of the Lower Cambrian McNaughton Formation in the main ranges of the central Canadian Rocky Mountains. There are two distinct vein types: an early syntectonic, syn- to postmetamorphic, auriferous, bedding-parallel type, generated during repeated northeast-directed compressive tectonism; and a late, postpenetrative deformational discordant type, which contains only minor gold (<500 ppb Au). Gold emplacement and discordant veining were confined to the onset of late compression leading to development of the Chatter Creek Fault.The spatial distribution and dimensions of the veins attest to mechanically founded lithologic anisotropy. Bedding-parallel veins are confined to less competent, volumetrically minor pelitic rock types. Discordant veins are confined to competent quartzitic units.Bedding-parallel vein filling took place in two paragenetic stages: a protracted, pre-gold stage (quartz ± minor white mica and pyrite) depositing over 90% of vein material; and a late gold-bearing–post-gold stage (quartz–pyrite–gold–galena ± white mica and Fe carbonate). Gold usually occurs in association with brecciated pelites and penecontemporaneous sulfides. Discordant veins (quartz ± minor pyrite) record a single stage of vein filling broadly coeval with gold deposition. Minor hydrothermal alteration (pyrite ± white mica ± carbonate) of adjacent wall rocks accompanied gold emplacement and is mineralogically congruent with the regional archimetamorphic and bedding-parallel vein assemblages.In terms of their setting and morphology, the Athabasca Pass gold lodes are viewed as a siliciclastic-hosted analogue of the turbidite-hosted class of gold deposits. Principle geochemical differences from published process models for turbidite-hosted gold deposits are a function of the mineralogical maturity of the siliciclastic host strata in the Athabasca Pass.


2019 ◽  
Vol 485 (6) ◽  
pp. 736-740
Author(s):  
V. Yu. Prokofiev ◽  
K. V. Lobanov ◽  
A. A. Pek ◽  
M. V. Chicherov ◽  
A. A. Borovikov

This paper reports on the physical-chemical parameters and vertical distribution of different types of fluid inclusions in quartz from the Au-bearing interval of the Kola Superdeep Borehole. We assume that gold ore mineralization was formed when a deep flux of CO2 interacted with brines at depths of 10 205-9269 m due to tectonic factors. In this paper, we discussed the role of these processes in the formation of the orogenic gold deposits including the gold mineralization of the Southern Pechenga structural zone.


2008 ◽  
Vol 72 (4) ◽  
pp. 953-970 ◽  
Author(s):  
T. Oberthür ◽  
T. W. Weiser

AbstractGold mineralization at the Viceroy Mine is hosted in extensional veins in steep shear zones that transect metabasalts of the Archaean Arcturus Formation. The gold mineralization is generally made up of banded or massive quartz carrying abundant coarse arsenopyrite. However, most striking is a distinct suite of Au-Bi-Te-S minerals, namely joseite-A (Bi4TeS2), joseite-B (Bi4Te2S), hedleyite (Bi7Te3), ikunolite (Bi4S3), ‘protojoseite’ (Bi3TeS), an unnamed mineral (Bi6Te2S), bismuthinite (Bi2S3), native Bi, native gold, maldonite (Au2Bi), and jonassonite (AuBi5S4). The majority of the Bi-Te-S phases is characterized by Bi/(Se+Te) ratios of >1. Accordingly, this assemblage formed at reduced conditions at relatively low fS2 and fTe2. Fluid-inclusion thermometry indicates depositional temperatures of the main stage of mineralization of up to 342°C, in the normal range of mesothermal, orogenic gold deposits worldwide. However, melting temperatures of Au-Bi-Te phases down to at least 235°C (assemblage (Au2Bi + Bi + Bi7Te3)) imply that the Au-Bi-Te phases have been present as liquids or melt droplets. Furthermore, the close association of native gold, native bismuth and other Bi-Te-S phases suggests that gold was scavenged from the hydrothermal fluids by Bi-Te-S liquids or melts. It is concluded that a liquid/melt-collecting mechanism was probably active at Viceroy Mine, where the distinct Au-Bi-Te-S assemblage either formed late as part of the main, arsenopyrite-dominated mineralization, or it represents a different mineralization event, related to rejuvenation of the shear system. In either case, some of the gold may have been extracted from pre-existing, gold-bearing arsenopyrite by Bi-Te-S melts, thus leading to an upgrade of the gold ores at Viceroy. The Au-Bi-Te-S assemblage represents an epithermal-style mineralization overprinted on an otherwise mesothermal (orogenic) gold mineralization.


2021 ◽  
Author(s):  
Wei Gao ◽  
Ruizhong Hu ◽  
Albert H. Hofstra ◽  
Qiuli Li ◽  
Jingjing Zhu ◽  
...  

Abstract The Youjiang basin on the southwestern margin of the Yangtze block in southwestern China is the world’s second largest Carlin-type gold province after Nevada, USA. The lack of precise age determinations on gold deposits in this province has hindered understanding of their genesis and relation to the geodynamic setting. Although most Carlin-type gold deposits in the basin are hosted in calcareous sedimentary rocks, ~70% of the ore in the Badu Carlin-type gold deposit is hosted by altered and sulfidized dolerite. Although in most respects Badu is similar to other Carlin-type gold deposits in the province, alteration of the unusual dolerite host produced hydrothermal rutile and monazite that can be dated. Field observations show that gold mineralization is spatially associated with, but temporally later than, dolerite. In situ secondary ion mass spectrometry (SIMS) U-Pb dating on magmatic zircon from the least altered dolerite yielded a robust emplacement age of 212.2 ± 1.9 Ma (2σ, mean square of weighted deviates [MSWD] = 0.55), providing a maximum age constraint on gold mineralization. The U-Th/He ages of detrital zircons from hydrothermally mineralized sedimentary host rocks at Badu and four other Carlin-type gold deposits yielded consistent weighted mean ages of 146 to 130 Ma that record cooling from a temperature over 180° to 200°C and place a lower limit on the age of gold mineralization in the basin. Hydrothermal rutile and monazite that are coeval with gold mineralization have been identified in the mineralized dolerite. Rutile is closely associated with hydrothermal ankerite, sericite, and gold-bearing pyrite. It has high concentrations of W, Fe, V, Cr, and Nb, as well as growth zones that are variably enriched in W, Fe, Nb, and U. Monazite contains primary two-phase fluid inclusions and is intergrown with gold-bearing pyrite and hydrothermal minerals. In situ SIMS U-Pb dating of rutile yielded a Tera-Wasserburg lower intercept age of 141.7 ± 5.8 Ma (2σ, MSWD = 1.04) that is within error of the in situ SIMS Th-Pb age of 143.5 ± 1.4 Ma (2σ, MSWD = 1.5) on monazite. These ages are ~70 m.y. younger than magmatic zircons in the host dolerite and are similar to the aforementioned U-Th/He cooling ages on detrital zircons from hydrothermally mineralized sedimentary host rocks. We, therefore, conclude that the Badu Carlin-type gold deposit formed at ca. 144 Ma. The agreement of the rutile and monazite ages with the U-Th-He cooling ages of Badu and four other Carlin-type gold deposits in the Youjiang basin suggests that ca. 144 Ma is representative of a regional Early Cretaceous Carlin-type hydrothermal event formed during back-arc extension.


2021 ◽  
pp. 52-61
Author(s):  
Vladimir Salikhov

The significant role of tectonometamorphic gold mineralization style thrust structures in the formation of some gold deposits (Kultuminskoye, Andryushkinskoye, Sepchugur, etc.) within Trans-Baikal region is shown. Thrust structures may present certain prospects for major relatively low-grade gold deposit prospecting, which requires a reassessment of some deposits.


2021 ◽  
Vol 21 (1) ◽  
pp. 246-261
Author(s):  
Hongye Feng ◽  
Yiwen Ju ◽  
Bo Chen ◽  
Weixuan Fang ◽  
Hongjian Zhu ◽  
...  

The mineralogical and compositional characteristics of gold-bearing minerals and the occurrence of gold are not only of great significance to exploring the sources of ore-forming materials and their formation mechanisms but also helpful for designing reasonable beneficiations and smelting schemes and achieving remarkable economic benefits. This paper presents an integrated study on the crystal characteristics, elemental composition and distribution of pyrite (the main gold-bearing minerals), on the basis of electron probe microanalysis (EPMA), scanning electron microscopy (SEM), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and nano-secondary ion mass spectrometry (NanoSIMS). The occurrence of gold in the Shuiyindong gold deposit and Ashawayi gold deposit has been studied by means of microscopy, SEM, and EPMA images, elemental correlations, S–Fe–As ternary diagrams, logAs–logAu diagrams and Au/As ratios. The gold in pyrite of the Shuiyindong deposit is in the form of nano gold inclusions and lattice gold. The gold in pyrite of the Ashawayi deposit dominantly exists in the form of nano gold inclusions or is present as micro-nano gold particles in the cracks or edges of pyrite, some of which can exist as lattice gold. The ore-forming hydrothermal solution of the Shuiyindong gold deposit is mainly underground hot brine, but it may be reformed by a deep magmatic hydrothermal solution or volcanic-subvolcanic hydrothermal solution. The ore-forming hydrothermal solution of the Ashawayi gold deposit is mainly derived from the metamorphic hydrothermal solution formed during the orogenic process, and the ore-forming process or post-mineralization process may be reformed by the leaching of underground hot brine. Finally, the characteristics of ore-forming fluids and evolution of the two types of deposits are determined via pyrite element surface scanning. This paper shows that micro-nanoscale study of gold-bearing pyrite is of great significance to understanding the gold mineralization process and is worth further study.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 344
Author(s):  
Damien Gaboury

Orogenic gold deposits have provided most of gold to humanity. These deposits were formed by fluids carrying dissolved gold at temperatures of 200–500 °C and at crustal depths of 4–12 km. The model involves gold mobilization as HS− complexes in aqueous solution buffered by CO2, with gold precipitation following changes in pH, redox activity (fO2), or H2S activity. In this contribution, the involvement of carbonaceous organic matter is addressed by considering the formation of large and/or rich orogenic gold deposits in three stages: the source of gold, its solubilization, and its precipitation. First, gold accumulates in nodular pyrite within carbonaceous-rich sedimentary rocks formed by bacterial reduction of sulfates in seawater in black shales. Second, gold can be transported as hydrocarbon-metal complexes and colloidal gold nanoparticles for which the hydrocarbons can be generated from the thermal maturation of gold-bearing black shales or from abiotic origin. The capacity of hydrocarbons for solubilizing gold is greater than those of aqueous fluids. Third, gold can be precipitated efficiently with graphite derived from fluids containing hydrocarbons or by reducing organic-rich rocks. Black shales are thus a key component in the formation of large and rich orogenic gold deposits from the standpoints of source, transport, and precipitation. Unusual CO2-rich, H2O-poor fluids are documented for some of the largest and richest orogenic gold deposits, regardless of their age. These fluids are interpreted to result from chemical reactions involving hydrocarbon degradation, hence supporting the fundamental role of organic matter in forming exceptional orogenic gold deposits.


Author(s):  
K. Derevska ◽  
O. Aleksandrov ◽  
V. Berehovenko ◽  
M. Kovalchuk ◽  
K. Rudenko ◽  
...  

The article clarifies the stratigraphic binding and origin of silicon nodules, which served as the main raw material for the manufacture of tools for mammoth hunters of the Mezhyrich Late Paleolithic site. In archaeological publications, these nodules are often mentioned to be confined to the "Vyrzhikovsky layer" (the Albian layer of the Lower Cretaceous), which was formed under continental conditions and consists of sand-clay (kaolin, in particular) deposits. The analysis of the necessary conditions and possible mechanisms for the formation of silicon nodules indicates the erroneousness of such ideas. Most likely, the source of silicon raw materials was the marine deposits of the Cenomanian (Upper Cretaceous), or, in accordance with the modern stratigraphic division of the Mesozoic-Cenozoic sequence, deposits of the Burim suite (upper Albian – lower Cenomanian). The paleogeographic setting, sedimentological conditions and lithological composition of the "Vyrzhikovsky layer" did not ensure the formation of silicon nodules in it in the form of inclusions. The latter are diagenetic in origin and could only form in the thickness of carbonate rocks, free of clay minerals. The region of Kaniv dislocations was the optimal region from the silicon production point of view, which was determined: firstly, by the tectonic dislocation of the sedimentary sequence, which contributed to the removal of deposits containing silicon nodules in the thickness of younger rocks; secondly,the erosion activity of temporary streams, which brought these deposits to the level of the denudation cut-off. The most convenient place for collecting flints was not the outcrop of bedrock in ravines but the cones of their removal, which overlook the floodplains of the Dnipro and Ros'. The possibility of collecting flint in the immediate vicinity of the Mezhirich site, in the ravines and gullies between the Ros and Rosava rivers, does not find confirmation, since the chalk deposits here lie much lower than the local erosion base and are not exposed by ravines. Therefore, the leading role in the formation of the raw material supply of the Late Paleolithic site of Mezhirich was played by the region adjacent to the Kaniv mountains of the alluvial-proluvial plain.Despite long-term geological study of the Dniester River basin, we still have no clear evidences about gold-bearing potentiality of this area as well as origin of gold. The leading role of geological, geochemical and mineralogical criteria is proved for defining the prospects of substantial gold deposits finding within the Dniester river basin. Gold was found here in the crystalline basement and in the sedimentary cover rocks. Study of mineralogy and lithology of the terraces above the flood-plain and typomorphic peculiarities of native gold shows that palaeogeographic conditions and alimentation zones of debris vary at the different tectonic stages of this area development. Gold-bearing potential of the Pliocene-Quaternary sediments in the Dniester River basin is related to the Pliocene (VI-IX terraces above the flood-plain) and Quaternary (I-V terraces above the flood-plain) terraces complex of the Dniester river, as well as this river and its inflows recent alluvia. Our study of the Mid-flow part of the Dniester river basin allow to conclude that native gold was found in geologocal strata of all ages, from Proterozoic up to the recent alluvium. This fact points the necessity of further prospecting to find the mother lodes of gold. Our field study, samples analyses made as well as publications observation allow highlighting the principal directions of further prospecting and evaluation works. The main among that are: 1) comprehensive study of river Dniester alluvia and its terraces complex (previously VI–VII terraces), that will allow to specify their material composition, to assess real gold-bearing potential and to define the history of denudation areas changes; 2) lithogeochemical prospecting of primary and secondary dispersion haloes to clear the principal gold-bearing regularities; 3) definition of prospect plots within the area described; 4) modern analytical approach study of typomorphic peculiarities of native gold from alluvia and terrace deposits to define its ore formational affinity and mineral type.


Author(s):  
Arifudin Idrus ◽  
Sukamandaru Prihatmoko ◽  
Ernowo Harjanto ◽  
Franz Michael Meyer ◽  
Irzal Nur ◽  
...  

In Indonesia, gold is commonly mined from epithermal-, porphyry-, and skarn-type deposits that are commonly found in volcanic belts along island arcs or active continental margin settings. Numerous gold prospects, however, were recently discovered in association with metamorphic rocks. This paper focuses on metamorphic rock-hosted gold mineralization in Eastern Indonesia, in particular the Bombana (SE Sulawesi) and Buru Island (Maluku) prospects. At Bombana, gold-bearing quartz-veins are hosted by the Pompangeo metamorphic complex. Sheared, segmented veins vary in thickness from 2 cm to 2 m. Gold is mainly present in the form of ‘free gold’ among silicate minerals and closely related to cinnabar, stibnite, tripuhyite, and in places, minor arsenopyrite. The gold distribution is erratic, however, ranging from below detection limit up to 134 g/t. At least three generations of veins are identified. The first is parallel to the foliation, the second crosscuts the first generation of veins as well as the foliation, and the late-stage laminated deformed quartz-calcite vein represents the third mineralization stage. The early veins are mostly massive to crystalline, occasionally brecciated, and sigmoidal, whereas the second-stage veins are narrower than the first ones and less subjected to brecciation. Gold grades in the second- and third-stage veins are on average higher than that in the earlier veins. Microthermometric and Raman spectrometric studies of fluid inclusions indicate abundant H2O-NaCl and minor H2O-NaCl-CO2 fluids. Homogenization temperatures and salinities vary from 114 to 283 ºC and 0.35 to 9.08 wt.% NaCl eq., respectively. Crush-leach analysis of fluid inclusions suggests that the halogen fluid chemistry is not identical to sea water, magmatic or epithermal related fluids, but tends to be similar to fluids in mesothermal-type gold deposits. In Buru Island (Gunung Botak and Gogorea prospects), two distinct generations of quartz veins are identified. Early quartz veins are segmented, sigmoidal discontinuous and parallel to the foliation of the host rock. This generation of quartz veins is characterized by crystalline relatively clear quartz, and weakly mineralized with low sulfide and gold contents. The second type of quartz veins occurs within the ‘mineralized zone’ of about 100 m in width and ~1,000 m in length. Gold mineralization is intensely overprinted by argillic alteration. The mineralization-alteration zone is probably parallel to the mica schist foliation and strongly controlled by N-S or NE-SW-trending structures. Gold-bearing quartz veins are characterized by banded texture particularly following host rock foliation and sulphide banding, brecciated and rare bladed-like texture. Alteration types consist of propylitic (chlorite, calcite, sericite), argillic and carbonation represented by graphite banding and carbon flakes. Ore mineral comprises pyrite, native gold, pyrrhotite, and arsenopyrite. Cinnabar and stibnite are present in association with gold. Ore chemistry indicates that 11 out of 15 samples yielded more than 1 g/t Au, in which 6 of them graded in excess of 3 g/t Au. All high-grade samples are composed of limonite or partly contain limonitic material. This suggests the process of supergene enrichment. Interestingly, most of the high-grade samples contain also high concentrations of As (up to 991ppm), Sb (up to 885ppm), and Hg (up to 75ppm). Fluid inclusions in both quartz vein types consist of 4 phases including L-rich, V-rich, L-V-rich and L1-L2-V (CO2)-rich phases. The mineralizing hydrothermal fluid typically is CO2-rich, of moderate temperature (300-400 ºC), and low salinity (0.36 to 0.54 wt.% NaCl eq). Based on those key features, gold mineralization in Bombana and Buru Island tends to meet the characteristics of orogenic, mesothermal types of gold deposit. Metamorphic rock-hosted gold deposits could represent the new targets for gold exploration particularly in Eastern Indonesia.


Sign in / Sign up

Export Citation Format

Share Document