Preparation and Self-Assembling of PLA-b-PNIPAM-b-PS Triblock Copolymer Thin Films

2021 ◽  
Vol 21 (4) ◽  
pp. 2174-2184
Author(s):  
Diansen Zhang ◽  
Yuzheng Xia ◽  
Hongliang Gong ◽  
Dong Zhang ◽  
Xiaonong Chen ◽  
...  

Polylactide-b-poly(N-isopropylacrylamide)-b-polystyrene (PLA-b-PNIPAM-b-PS) triblock copolymers (tri-BCPs) with various chemical compositions (block ratio) were prepared from the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. Subsequently, the self-assembling behaviors of these tri-BCP films obtained from spin-coating were investigated by annealing them under different solvent atmosphere. We found that these films could self-assemble into various morphologies due to the microphase separation of incompatible copolymer blocks. Atomic force microscopy confirmed the perpendicular cylindrical morphology self-assembled from PLA4.5k-b-PNIPAM5.2k-b-PS22.4k tri-BCP film under mixed solvent atmosphere of toluene/acetone (7:3, v/v). Self-assembled PLA cylinders are evenly distributed among the PS matrix and perpendicular to the film surface, with PNIPAM component taking place at the PLA/PS interphase. Furthermore, by etching the degradable PLA component, porous PS film decorated with PNIPAM “brushes” hoisting channels were generated. This work provides a facile method and detailed protocol for fabricating stimuli-responsive porous films which are promising for thermoresponsive “smart” separation technologies.

Author(s):  
J Li ◽  
X H Sheng

Thin films deposited on a phosphonate 3-aminopropyltriethoxysilane (APTES) self- assembled monolayer (SAM) were prepared on a hydroxylated silicon substrate by self-assembling. The chemical compositions and the chemical state of the film elements were determined by X-ray photoelectron spectrometry. The thickness of the films was determined with an ellipsometer, while the morphologies and nanotribological properties of the samples were analysed by atomic force microscopy. As a result, the target film was obtained. It was also found that the thin films showed the lowest friction and adhesion, followed by APTES—SAM and phosphorylated APTES—SAM, while the silicon substrate showed the highest friction and adhesion. Microscale scratch/wear studies clearly showed that thin films were much more scratch/wear resistant than the other samples.


2017 ◽  
Vol 95 (5) ◽  
pp. 605-611 ◽  
Author(s):  
Lei Wang ◽  
Shaoqing Wen ◽  
Zhanxiong Li

A series of novel amphiphilic ABA-type poly(tridecafluorooctylacrylate)-poly(ethylene glycol)-poly(tridecafluorooctylacrylate) (henceforth referred to as p-TDFA-PEG-p-TDFA) triblock oligomers were successfully synthesized via atom transfer radical polymerization (ATRP) using well-defined Br-PEG-Br as macroinitiator and copper as catalyst. The block oligomers were characterized by Fourier transform infrared (FTIR) spectroscopy and 1H and 19F nuclear magnetic resonances (NMR). Gel permeation chromatography (GPC) showed that the block oligomers have been obtained with narrow molecular weight distributions of 1.22–1.33. X-ray photoelectron spectroscopy (XPS) was carried out to confirm the attachment of p-TDFA-PEG-p-TDFA onto the silicon substrate, together with the chemical compositions of p-TDFA-PEG-p-TDFA. The wetabilities of the oligomer films were measured by water contact angles (CAs). Water CAs of p-TDFA-PEG-p-TDFA film were measured and their morphologies were tested by atomic force microscopy (AFM). The result showed that the CAs of the oligomer films, which possess fluoroalkyl groups assembled on the outer surface, increase after heating due to the migration of fluoroalkyl groups and the resulted microphase separation of the p-TDFA-PEG-p-TDFA.


2010 ◽  
Vol 152-153 ◽  
pp. 525-529
Author(s):  
Tao Tao Qiang ◽  
Xue Chuan Wang ◽  
Xian Bo Lu ◽  
Long Fang Ren

Hydroxyl-terminated hyperbranched polyurethane elastomer (HBPU) was synthesized by graft copolymerization of hyperbranched poly (amine-ester) polyols(HPAE) and polyether-based aliphatic polyurethane prepolymer(PPU), and the PPU was synthesized by step polymerization of isophorone diisocyanate(IPDI) with polyethylene glycol(PEG) and dibutyltin dilaurate(DBTDL) as catalyst. The FT-IR spectroscopy, TGA and XRD were used to characterize the structure, thermal properties and crystallinity of HBPU. The mechanical properties of the elastomers were conducted on a testing machine. Microphase separation of HBPU film surface was studied by atomic force microscopy (AFM). The experimental results showed that the HBPU took on excellent hydrogen bonding and mechanical properties. The tensile strength of HBPU elastomer reached to 20.6MPa, which increased by 41.2 times than that of PPU elastomer. And the elongation at break was as high as 251.3%.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350028
Author(s):  
XIULAN ZHANG ◽  
HENG ZHANG ◽  
YIHONG YANG ◽  
ZHENYU CHEN

The self-assembling behavior and inhibition effect of dodecanethiol self-assembled monolayers (SAMs) on copper surface were investigated by atomic force microscopy (AFM) and electrochemical methods. The assembling process was monitored by AFM phase images. The assembling time influences the corrosion protection efficiency of dodecanethiol SAMs. Surface friction significantly decreases when the copper surface is covered by SAMs.


1999 ◽  
Vol 5 (6) ◽  
pp. 413-419 ◽  
Author(s):  
Bernardo R.A. Neves ◽  
Michael E. Salmon ◽  
Phillip E. Russell ◽  
E. Barry Troughton

Abstract: In this work, we show how field emission–scanning electron microscopy (FE-SEM) can be a useful tool for the study of self-assembled monolayer systems. We have carried out a comparative study using FE-SEM and atomic force microscopy (AFM) to assess the morphology and coverage of self-assembled monolayers (SAM) on different substrates. The results show that FE-SEM images present the same qualitative information obtained by AFM images when the SAM is deposited on a smooth substrate (e.g., mica). Further experiments with rough substrates (e.g., Al grains on glass) show that FE-SEM is capable of unambiguously identifying SAMs on any type of substrate, whereas AFM has significant difficulties in identifying SAMs on rough surfaces.


2017 ◽  
Vol 28 (45) ◽  
pp. 455603 ◽  
Author(s):  
Hitoshi Asakawa ◽  
Natsumi Inada ◽  
Kaito Hirata ◽  
Sayaka Matsui ◽  
Takumi Igarashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document