The preparation and tribological characteristics of a phosphorylated 3-aminopropyltriethoxysilane self-assembled nanometre film

Author(s):  
J Li ◽  
X H Sheng

Thin films deposited on a phosphonate 3-aminopropyltriethoxysilane (APTES) self- assembled monolayer (SAM) were prepared on a hydroxylated silicon substrate by self-assembling. The chemical compositions and the chemical state of the film elements were determined by X-ray photoelectron spectrometry. The thickness of the films was determined with an ellipsometer, while the morphologies and nanotribological properties of the samples were analysed by atomic force microscopy. As a result, the target film was obtained. It was also found that the thin films showed the lowest friction and adhesion, followed by APTES—SAM and phosphorylated APTES—SAM, while the silicon substrate showed the highest friction and adhesion. Microscale scratch/wear studies clearly showed that thin films were much more scratch/wear resistant than the other samples.

2021 ◽  
Vol 21 (4) ◽  
pp. 2174-2184
Author(s):  
Diansen Zhang ◽  
Yuzheng Xia ◽  
Hongliang Gong ◽  
Dong Zhang ◽  
Xiaonong Chen ◽  
...  

Polylactide-b-poly(N-isopropylacrylamide)-b-polystyrene (PLA-b-PNIPAM-b-PS) triblock copolymers (tri-BCPs) with various chemical compositions (block ratio) were prepared from the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. Subsequently, the self-assembling behaviors of these tri-BCP films obtained from spin-coating were investigated by annealing them under different solvent atmosphere. We found that these films could self-assemble into various morphologies due to the microphase separation of incompatible copolymer blocks. Atomic force microscopy confirmed the perpendicular cylindrical morphology self-assembled from PLA4.5k-b-PNIPAM5.2k-b-PS22.4k tri-BCP film under mixed solvent atmosphere of toluene/acetone (7:3, v/v). Self-assembled PLA cylinders are evenly distributed among the PS matrix and perpendicular to the film surface, with PNIPAM component taking place at the PLA/PS interphase. Furthermore, by etching the degradable PLA component, porous PS film decorated with PNIPAM “brushes” hoisting channels were generated. This work provides a facile method and detailed protocol for fabricating stimuli-responsive porous films which are promising for thermoresponsive “smart” separation technologies.


2012 ◽  
Vol 164 ◽  
pp. 284-288
Author(s):  
Tao Bai ◽  
Xian Hua Cheng

Lanthanum-based thin films are deposited on the oxidized 3-mercaptopropyl trimethoxysilane self-assembled monolayer (MPTS-SAM) based on the chemisorption of the sulfonic group. The surface energy, chemical composition, phase transformation and surface morphology of the films are analyzed by using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The experimental results indicate that the lanthanum-based thin films are absorbed on oxidized MPTS-SAM and lanthanum element with different oxidation states exists in the thin films deposited on the surface of self-assembly monolayers. The content of lanthanum on the oxidized MPTS-SAM increases with the extension of the assembly time and the rare earth reached saturation when the time was 6h.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


1999 ◽  
Vol 5 (6) ◽  
pp. 413-419 ◽  
Author(s):  
Bernardo R.A. Neves ◽  
Michael E. Salmon ◽  
Phillip E. Russell ◽  
E. Barry Troughton

Abstract: In this work, we show how field emission–scanning electron microscopy (FE-SEM) can be a useful tool for the study of self-assembled monolayer systems. We have carried out a comparative study using FE-SEM and atomic force microscopy (AFM) to assess the morphology and coverage of self-assembled monolayers (SAM) on different substrates. The results show that FE-SEM images present the same qualitative information obtained by AFM images when the SAM is deposited on a smooth substrate (e.g., mica). Further experiments with rough substrates (e.g., Al grains on glass) show that FE-SEM is capable of unambiguously identifying SAMs on any type of substrate, whereas AFM has significant difficulties in identifying SAMs on rough surfaces.


1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


1999 ◽  
Vol 38 (4) ◽  
pp. 684 ◽  
Author(s):  
Victor E. Asadchikov ◽  
Angela Duparré ◽  
Stefan Jakobs ◽  
Albert Yu. Karabekov ◽  
Igor V. Kozhevnikov ◽  
...  

2003 ◽  
Vol 780 ◽  
Author(s):  
C.Z. Dinu ◽  
R. Tanasa ◽  
V.C. Dinca ◽  
A. Barbalat ◽  
C. Grigoriu ◽  
...  

AbstractPulsed Laser Deposition method (PLD) was used to grow nitinol (NiTi) thin films with goal of investigating their biocompatibility. High purity Ni and Ti targets were alternatively ablated in vacuum with a laser beam (λ=355 nm, 10 Hz) and the material was collected on room temperature Ti substrates. X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and atomic force microscopy analyses have been performed to investigate the chemical composition, crystalline structure and surface morphology of the NiTi films. The nitinol layers biocompatibility has been tested using as a metric the extent to whichthe cells adhereduring the culture period on the surface of NiTi layers deposited on Ti substrates. Vero and fibroblast cell lines dispersed into MEM (Eagle) solution containing 8% fetal bovine serum, at 37° C, were used for tests. Preliminary studies indicate that the interaction at the interface is specifically controlled by the surface morphology, (especially by surface roughness), and by the chemical state of the surface. Cell behavior after contact with NiTi/Ti structure for different intervals (18, 22 and 25 days for the Vero cells, and after 10 and 25 days for fibroblasts) supports the conclusion that NiTi is a very good candidate as a biocompatible material.


Sign in / Sign up

Export Citation Format

Share Document