Enhancement of Charge Injection in Organic Field-Effect Transistors Through Semiconducting Organic Buffer Layer

2021 ◽  
Vol 21 (7) ◽  
pp. 3923-3928
Author(s):  
Gyujeong Lee ◽  
Hea-Lim Park ◽  
Sin-Hyung Lee ◽  
Min-Hoi Kim ◽  
Sin-Doo Lee

We investigate the effect of a semiconducting organic buffer layer (SOBL) on the injection and transport of charges in organic field-effect transistors (OFETs). Here, two different injection barriers at the source/organic semiconductor interface are respectively studied with the aid of a numerical simulation: one is intermediate (0.4 eV), and the other is large energy barriers (0.6 eV). The introduction of nanostructure buffer layer, or SOBL, exhibits the decrease of potential loss at the contact interfaces, improving the electrical performance of the OFETs. It is also found that the energy level as well as the mobility of the SOBL plays an important role in determining the injection properties at the metal/organic hetero-interfaces and thus improving the device performance. Our systematic investigation on the injection barrier by the introduction of the nanostructure buffer layer will provide a useful guideline for the fabrication of high-performance FETs with molecular semiconductors.

2015 ◽  
Vol 3 (17) ◽  
pp. 4244-4249 ◽  
Author(s):  
Jian-Yong Hu ◽  
Masahiro Nakano ◽  
Itaru Osaka ◽  
Kazuo Takimiya

We report new NDTI-based triad-type ambipolar molecular semiconductors for high-performance air-stable, solution-processed OFETs and complementary-like inverters.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Naqi ◽  
Kyung Hwan Choi ◽  
Hocheon Yoo ◽  
Sudong Chae ◽  
Bum Jun Kim ◽  
...  

AbstractLow-temperature-processed semiconductors are an emerging need for next-generation scalable electronics, and these semiconductors need to feature large-area fabrication, solution processability, high electrical performance, and wide spectral optical absorption properties. Although various strategies of low-temperature-processed n-type semiconductors have been achieved, the development of high-performance p-type semiconductors at low temperature is still limited. Here, we report a unique low-temperature-processed method to synthesize tellurium nanowire networks (Te-nanonets) over a scalable area for the fabrication of high-performance large-area p-type field-effect transistors (FETs) with uniform and stable electrical and optical properties. Maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. To further demonstrate the applicability of the proposed semiconductor, the electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.


2017 ◽  
Vol 53 (43) ◽  
pp. 5898-5901 ◽  
Author(s):  
Sureshraju Vegiraju ◽  
Deng-Yi Huang ◽  
Pragya Priyanka ◽  
Yo-Shan Li ◽  
Xian-Lun Luo ◽  
...  

DDTT-TTARexhibits the highest mobility of 0.81 cm2V−1s−1.


2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


Sign in / Sign up

Export Citation Format

Share Document