Preparation and Characterization of Wood-Plastic Nanocomposites Based on Acrylonitrile-Butadiene-Styrene

2021 ◽  
Vol 21 (9) ◽  
pp. 4840-4845
Author(s):  
Guixin Zhang ◽  
Yanyan Zhang ◽  
Jun Yang ◽  
Shijuan Li ◽  
Weihong Guo

The new wood-plastic nanocomposites (WPC) based on acrylonitrile-butadiene-styrene (ABS) resin was successfully blended with ABS and poplar flour (PF) through a HAAKE rheomix. The mechanical properties of nanocomposites, except for flexural modulus, were reduced after increasing the PF content. SEM photos show the reduction resulting from weak interfacial adhesion between the PF phase and ABS phase. Higher PF content leads to a low thermal stability and a high water absorption ratio. Different coupling agents (CA) were employed to improve the compatibility between PF and ABS. The results suggest that ABS-g-MAH is more effective than POE-g-MAH, EVA and SEBS. Maleic anhydride (MA) was blended in situ with PF and ABS as the reactive compatibilizer and mechanical properties of nanocomposites were improved except impact strength.

2021 ◽  
pp. 089270572110441
Author(s):  
BY Hou ◽  
L Ren ◽  
YN Sun ◽  
MY Zhang ◽  
HX Zhang

This work proposed an efficient method to synthesize acrylonitrile-butadiene-styrene (ABS) copolymer and α-Methylstyrene (α-MSt)/N-phenylmaleimide (NPMI)/Acrylonitrile (AN) (MSAMI) random copolymer via emulsion polymerization, aiming to combine the excellent heat resistance of MSAMI and numerous advantages of ABS resin including mechanical properties, processing and recyclability. The effects of the MSAMI content and α-MSt/AN ratio on the thermal performance, mechanical properties and the morphology of heat-resistant ABS were investigated by FITR, dynamic mechanical analyses (DMA), Vicat Softening Temperature (VST), Thermogravimetric Analysis (TGA) and Scanning Electron Microscope (SEM). As a result, the heat-resistant of ABS resin was obviously enhanced by MSAMI, and its glass transition temperature (Tg) could be extended with the increase of NPMI content. The Tg could reach 173°C when NPMI content was 20% at the same trend as the VST. Synthetically, the contradiction between the heat resistance and mechanical properties of ABS resin reached a good balance when the NPMI content was 15% and α-MSt/AN ratio was 69/31. In SEM, the fracture morphology of the heat-resistant ABS resin was gradually tended to be smooth with the increase of the NPMI content. Therefore, the MSAMI random copolymer was successful prepared, which provided insight for the synthesis of heat-resistant modifiers and promoted the potential application of heat-resistant modifiers in automobiles and aircraft.


1999 ◽  
Vol 13 (14n16) ◽  
pp. 1908-1916 ◽  
Author(s):  
Sheila Lopes Vieira ◽  
Antonio Celso Fonseca de Arruda

In the majority of published articles on the topic, ER fluids have been studied as if they were viscous liquids. In this work, electrorheological fluids were characterized as solids and their mechanical properties were determined. The results infer that ER materials are controllably resistant to compression, tensile and shear stress, in this order of magnitude. More precisely, fluids made of starch have elasticity modulus similar to that of rubber, they have tensile strength 103 to 5×104 times lower than that of low density polyethylene (LDPE), static yield stress 4×104 to 8×105 times lower than that of acrylonitrile-butadiene-styrene terpolymer (ABS) and fatigue life similar to some polymers like polyethylene(PE) and polypropylene (PP).


Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1258-1270
Author(s):  
Vardaan Chauhan ◽  
Timo Kärki ◽  
Juha Varis

The aim of the present study was to investigate the effects of fiber content and then silane treatment on the mechanical performance of the natural fiber composites of recycled acrylonitrile–butadiene–styrene (ABS) provided by the automotive sector. Wood and palmyra fibers were used as fillers in 10% and 20% fiber content composites. The fibers were treated with N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane to improve the interfacial adhesion between fibers and polymer matrices. The mechanical properties of the composites were determined by tensile and impact tests. Morphological analysis was later performed using a scanning electron microscope (SEM). According to the experiment results, the tensile and impact strength of both wood and palmyra fibers increase after silane treatment. However, for the low-wood-fiber-content composite, the tensile and impact strength decrease after silane treatment due to the presence of an excess amount of silane relative to fiber content. The addition of wood and palmyra fibers significantly improved the tensile modulus of composite material and further increases slightly after silane treatment. Finally, SEM analysis shows a homogenous mix of fibers and polymer matrices with fewer voids after silane treatment, thereby improving interfacial adhesion.


2015 ◽  
Vol 659 ◽  
pp. 463-467
Author(s):  
Sirirat Wacharawichanant ◽  
Parida Amorncharoen ◽  
Ratiwan Wannasirichoke

The effects of polypropylene-graft-maleic anhydride (PP-g-MA) compatibilizers on the morphology and mechanical properties of polyoxymethylene (POM)/acrylonitrile-butadiene-styrene (ABS) blends were investigated. Two types of compatibilizers, PP-g-MA with maleic anhydride 0.50 wt% (PP-g-MA1) and PP-g-MA with maleic anhydride 1.31 wt% (PP-g-MA2) were used to study the interfacial adhesion of POM and ABS. POM/ABS blends with and without PP-g-MA compatibilizer were prepared by an internal mixer and molded by compression molding. Scanning electron microscope (SEM) was used to investigate the morphology of ABS phase in POM matrix. The results found that POM/ABS blends clearly demonstrated a two phase separation of dispersed ABS phase and the POM matrix phase, and ABS phase dispersed as spherical domains in POM matrix in a range of ABS 10-30 wt% and the blends containing ABS more than 30 wt% showed the elongated structure of ABS phase. The addition of PP-g-MA could improve the interfacial adhesion of POM/ABS blends due to the domain size of ABS phase decreased after adding PP-g-MA. The mechanical properties showed that the impact strength of POM/ABS blends decreased in a range of 10-20 wt% and did not change after 20 wt%. The addition of PP-g-MA did not change the impact strength of POM/ABS blends. The Young’s modulus of POM/ABS blends increased up to 30 wt% of ABS and then decreased. While the blends showed the decrease of tensile strength and percent strain at break with increasing ABS content. The addition of PP-g-MA increased the tensile strength of POM/ABS blends in a range of 30-40 wt% of ABS. The above results indicated that the morphology had an effect on the mechanical properties of polymer blends.


2015 ◽  
Vol 1119 ◽  
pp. 263-267 ◽  
Author(s):  
M.T.M. Lufti ◽  
D.L. Majid ◽  
A.R.M. Faizal ◽  
Mazlan Norkhairunnisa

Mechanical properties of formulated biocomposite between acrylonitrile-butadiene-styrene (ABS) polymer and kenaf whole stem (KWS) fibre have been investigated. This work has been done by alternating the KWSfibre loading with aim to propose the best formulation for preparing ABS/kenafbiocompositeby referring to its mechanical properties with the addition of processing aid.KWS fiber loading up from 10% to 50% are considered in this work and evaluated. It was found that by increasing the KWS fibre loading, the Young’s and flexural modulus of the ABS/kenafbiocomposite was subsequently increased too. Interestingly, the biocomposite strength decreased considerably while the impact strength drops significantly. ABS/kenafbiocomposite with 50% KWSfibre loading (C-50/50) has showed better performance compared to other formulation. However, a higher fibre loading was not considered presently as difficulties during compounding process are to be anticipated.


2012 ◽  
Vol 535-537 ◽  
pp. 2600-2605 ◽  
Author(s):  
Jian Bing Guo ◽  
Kai Zhou Zhang ◽  
Shu Hao Qin

The toughness of blends composed of PA6 and acrylonitrile-butadiene-styrene (ABS) compatibilized by using styrene-maleic anhydride (SMA) as a compatibilizer was measured over a wide temperature region. The addition of SMA results in a significant increase of the PA6 phase viscosity due to the in situ formation of graft polymers during the melt processing, and the significant change in viscosity ratio between the PA6 and ABS due to the formation of SMA-g-PA6 graft polymer may be prevent the coalescence of the dispersed phase. All results in this paper were consistent, and showed the good interaction between PA6 and ABS, which were proved by the morphology and mechanical properties of the blends.


Sign in / Sign up

Export Citation Format

Share Document