Carrier-Gas Induced Changes in the Structural, Stoichiometric and Photocatalytic Characteristics of Gallium Oxide Nanostructures

2021 ◽  
Vol 21 (10) ◽  
pp. 5266-5274
Author(s):  
P. R. Jubu ◽  
F. K. Yam

Ga2O3/ITO/glass photoelectrodes prepared by the CVD method has rarely been tested in the electrochemical cell for water splitting. In this study, we investigate the photoelectrolytic performance of Ga2O3/ITO-glass photocatalysts produced by the high-temperature CVD route. The changing of N2 carrier gas flow rate from 0 to 1800 seem induces change in the materials properties. XRD signal strength of the produced bi-phase Ga2O3 is observed to deteriorate, while diffraction line width broadens with increasing N2 supply. Films show a combination of nanoclumps and nanostrips morphology. Ga/O ratio decreases, while the optical bandgap gradually increases from 4.37 to 4.42 eV with increasing O content and crystallite size. Photoluminescence measurements show UV, blue, green and red emissions, respectively. Linear sweep voltammetry of the electrodes in 0.1 M KOH electrolyte shows improvement in photocurrent density from 160 to 257 μA/cm2 versus Ag/AgCl at 1 V bias, and a maximum photon-to-current conversion efficiency 0.06%.

2020 ◽  
pp. 002029402096423
Author(s):  
Shi Rui Guo ◽  
Qian Qian Yin ◽  
Lu Jun Cui ◽  
Xiao Lei Li ◽  
Ying Hao Cui ◽  
...  

This paper investigates the influence of carrier gas flow on the external flow field of coaxial powder feeding nozzle. FLUENT software was adopted to establish gas-solid two-phase flow. The simulation of powder stream field under different carrier gas flow was also carried out. Results show that the larger the flow of carrier gas is, the higher the gas flow field velocity at the nozzle outlet is. At the same time, the concentration at the convergence point is lower, and the convergent point is maintained at 0.015 m. Under the condition of 4 L/min, the powder flow convergence is good. When it exceeds 4 L/min, powder spot diameter increases. The experiment of powder aggregation and laser cladding forming were completed, which shows that the forming effect is the best one under the condition of 4 L/min. It is consistent with the simulation analysis results and has a high reference to the optimization of the process parameters of coaxial nozzle.


1966 ◽  
Vol 38 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Gary. Horlick ◽  
W. E. Harris ◽  
H. W. Habgood

1985 ◽  
Vol 8 (9) ◽  
pp. 580-584 ◽  
Author(s):  
R. E. Kaiser ◽  
R. I. Rieder ◽  
Lin Leming ◽  
L. Blomberg ◽  
P. Kusz

2013 ◽  
Vol 39 (3) ◽  
pp. 258-261 ◽  
Author(s):  
A. G. Kurenya ◽  
D. V. Gorodetskiy ◽  
V. E. Arkhipov ◽  
A. V. Okotrub

2015 ◽  
Vol 430 ◽  
pp. 87-92 ◽  
Author(s):  
Ming Li ◽  
Jingyun Wang ◽  
Kan Li ◽  
Yingjie Xing ◽  
H.Q. Xu

2016 ◽  
Vol 18 (3) ◽  
pp. 88-96 ◽  
Author(s):  
Najaf Ali ◽  
Mahmood Saleem ◽  
Khurram Shahzad ◽  
Sadiq Hussain ◽  
Arshad Chughtai

Abstract The yield and composition of pyrolysis products depend on the characteristics of feed stock and process operating parameters. Effect of particle size, reaction temperature and carrier gas flow rate on the yield of bio-oil from fast pyrolysis of Pakistani maize stalk was investigated. Pyrolysis experiments were performed at temperature range of 360-540°C, feed particle size of 1-2 mm and carrier gas fl ow rate of 7.0-13.0 m3/h (0.61.1 m/s superficial velocity). Bio-oil yield increased with the increase of temperature followed by a decreasing trend. The maximum yield of bio-oil obtained was 42 wt% at a temperature of 490°C with the particle size of around 1.0 mm and carrier gas flow rate of 11.0 m3/h (0.9 m/s superficial velocity). High temperatures resulted in the higher ratios of char and non-condensable gas.


Sign in / Sign up

Export Citation Format

Share Document