maximum photon
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 13 (21) ◽  
pp. 4352
Author(s):  
Seamus Coveney ◽  
Xavier Monteys ◽  
John D. Hedley ◽  
Yeray Castillo-Campo ◽  
Brian Kelleher

Nearshore bathymetric data are used in many coastal monitoring applications, but acquisition conditions can be challenging. Shipborne surveys are prone to the risk of grounding in shallow waters, and scheduled airborne surveys often fail to coincide with optimal atmospheric and water conditions. As an alternative, since its launch in 2018, ICESat-2 satellite laser profile altimetry data provide free and readily available data on a 91-day repeat cycle, which may contain incidental bathymetric returns when suitable environmental conditions prevail. In this paper, the vertical accuracy of extracted, refraction-adjusted ICESat-2 nearshore marine bathymetric data is evaluated at four test sites in a Northern hemisphere, temperate latitude location. Multiple ICEsat-2 bathymetric values that occurred in close horizontal proximity to one another were averaged at a spatial scale of 1 m and compared with Multibeam Echosounder bathymetric survey data and Global Navigation Satellite System reference data. Mean absolute errors of less than 0.15 m were observed up to depths of 5 m, with errors of less than 0.24 m (to 6 m), 0.39 m (to 7 m) and 0.52 m (to 10 m). The occurrence of larger bathymetric errors with depth, which increase to 0.54 m at maximum photon depths of 11 m, appears to be primarily related to reduced numbers of geolocated photons with depth. The accuracies achieved up to 6 m suggest that the manual extraction, refraction adjustment and bathymetric filtering steps were effective. Overall, the results suggest that ICESat-2 bathymetric data accuracy may be sufficient to be considered for use in nearshore coastal monitoring applications where shipborne and airborne bathymetric data might otherwise be applied.


2021 ◽  
Vol 21 (10) ◽  
pp. 5266-5274
Author(s):  
P. R. Jubu ◽  
F. K. Yam

Ga2O3/ITO/glass photoelectrodes prepared by the CVD method has rarely been tested in the electrochemical cell for water splitting. In this study, we investigate the photoelectrolytic performance of Ga2O3/ITO-glass photocatalysts produced by the high-temperature CVD route. The changing of N2 carrier gas flow rate from 0 to 1800 seem induces change in the materials properties. XRD signal strength of the produced bi-phase Ga2O3 is observed to deteriorate, while diffraction line width broadens with increasing N2 supply. Films show a combination of nanoclumps and nanostrips morphology. Ga/O ratio decreases, while the optical bandgap gradually increases from 4.37 to 4.42 eV with increasing O content and crystallite size. Photoluminescence measurements show UV, blue, green and red emissions, respectively. Linear sweep voltammetry of the electrodes in 0.1 M KOH electrolyte shows improvement in photocurrent density from 160 to 257 μA/cm2 versus Ag/AgCl at 1 V bias, and a maximum photon-to-current conversion efficiency 0.06%.


2021 ◽  
Vol 1 (2) ◽  
pp. 186-197
Author(s):  
Mst Jesmin Nahar ◽  
Md Rasel Sarkar ◽  
Moslem Uddin ◽  
Md Faruk Hossain ◽  
Md Masud Rana ◽  
...  

This paper presents the design and execution of a solar tracker system devoted to photovoltaic (PV) conversion panels. The proposed single-axis solar tracker is shifted automatically based on the sunlight detector or tracking sensor. This system also removes incident sunlight overlapping from sensors that are inside the sunlight tracking system. The Light Dependent Resistor (LDR) is used as a sensor to sense the intensity of light accurately. The sensors are placed at a certain distance from each other in the tracker system to avoid sunlight overlapping for maximum power production. The total system is designed by using a microcontroller (PIC16F877A) as a brain to control the whole system. The solar panel converts sunlight into electricity. The PV panel is fixed with a vertical axis of the tracker. This microcontroller will compare the data and rotate a solar panel via a stepper motor in the right direction to collect maximum photon energy from sunlight. From the experimental results, it can be determined that the automatic (PV solar tracker) sun tracking system is 72.45% more efficient than fixed panels, where the output power of the fixed panel and automatically adjusted panel are 8.289 watts and 14.287 watts, respectively.


2020 ◽  
Author(s):  
Keiran Rowell ◽  
Scott Kable ◽  
Meredith J. T. Jordan

Carbonyls are among the most abundant volatile organic compounds in the atmosphere, and their C=O chromophores allow them to photolyse. However, carbonyl photolysis reactions are not restricted to the excited state: the C=O chromophore allows relaxation to, and reaction on, the ground state, following photon absorption. <div><br></div><div>In this paper, the energetic thresholds for eight ground state reactions across twenty representative carbonyl species are calculated using double-hybrid density functional theory. Most reactions are found to be energetically accessible within the maximum photon energy available in the troposphere, but are absent in contemporary atmospheric chemistry models. </div><div><br></div><div>Structure–activity relationships are then elucidated so that the significance of each reaction pathway for particular carbonyl species can be predicted based upon their class. The calculations here demonstrate that ground state photolysis pathways are ubiquitous in carbonyls and should not be ignored in the analysis of carbonyl photochemistry.</div>


2020 ◽  
Author(s):  
Keiran Rowell ◽  
Scott Kable ◽  
Meredith J. T. Jordan

Carbonyls are among the most abundant volatile organic compounds in the atmosphere, and their C=O chromophores allow them to photolyse. However, carbonyl photolysis reactions are not restricted to the excited state: the C=O chromophore allows relaxation to, and reaction on, the ground state, following photon absorption. <div><br></div><div>In this paper, the energetic thresholds for eight ground state reactions across twenty representative carbonyl species are calculated using double-hybrid density functional theory. Most reactions are found to be energetically accessible within the maximum photon energy available in the troposphere, but are absent in contemporary atmospheric chemistry models. </div><div><br></div><div>Structure–activity relationships are then elucidated so that the significance of each reaction pathway for particular carbonyl species can be predicted based upon their class. The calculations here demonstrate that ground state photolysis pathways are ubiquitous in carbonyls and should not be ignored in the analysis of carbonyl photochemistry.</div>


2019 ◽  
Vol 64 (9) ◽  
pp. 787
Author(s):  
S. N. Afanasyev

The method of diffusion chamber in the magnetic field making use of a bremsstrahlung beam with a maximum photon energy of 150 MeV is applied to study the 12C(y,3a) and 16O(y,4a) reactions. A resonance identified as the ground state of 8Be nucleus is found in the distribution of events over the energy of the relative motion of two a-particles. The partial cross-sections of the 8Be nucleus formation channels are measured. It is shown that the mechanism of interaction between a y-quantum and a virtual a-particle pair takes place in this case.


2019 ◽  
Vol 52 (3) ◽  
pp. 498-506 ◽  
Author(s):  
Peter Nádaždy ◽  
Jakub Hagara ◽  
Matej Jergel ◽  
Eva Majková ◽  
Petr Mikulík ◽  
...  

A systematic study of beam-compressing monolithic channel-cut monochromators (CCMs) with a V-shaped channel was performed. The CCMs were optimized in terms of a chosen output beam parameter for exploitation in laboratory high-resolution small-angle X-ray scattering (SAXS) and grazing-incidence SAXS (GISAXS) experiments. Ray-tracing simulations provided maps of particular Ge(220) CCM output beam parameters over the complete set of asymmetry angles of the two CCM diffractions. This allowed the design and fabrication of two dedicated CCMs, one optimized for maximum photon flux per detector pixel and the other for Kα2 suppression. The output beam quality was tested in SAXS/GISAXS experiments on a commercial setup with a liquid-metal-jet Ga microfocus X-ray source connected to 2D collimating Montel optics. The performance of the CCM optimized for maximum photon flux per detector pixel was limited by the quality of the inner channel walls owing to a strongly asymmetric design. However, the CCM optimized for Kα2 suppression exhibited an excellent resolution of 314 nm in real space. This was further enhanced up to 524 nm by a parallel Ge(220) CCM in the dispersive configuration at a still applicable output flux of 3 × 106 photon s−1. The 314 nm resolution outperforms by more than 2.5× the upper resolution limit of the same setup with a pinhole collimator instead of the CCM. Comparative SAXS measurements on the same setup with a Kratky block collimator as an alternative to the CCM showed that the CCM provided more than one order higher transmittance at a comparable resolution or twice higher resolution at a comparable transmittance. These results qualify CCMs for a new type of integrated reflective–diffractive optics consisting of Göbel mirrors and V-shaped CCMs for the next generation of high-performance microfocus laboratory X-ray sources.


Author(s):  
M. Jasim Uddin ◽  
Glenn Grissom ◽  
Miguel Leal ◽  
Veronica Galvez ◽  
Tarek Trad ◽  
...  

In this work, the morphology and electrocatalytic features of carbon nanotube yarns at the structural level allow for enhanced photoconversion efficiency. The energy conversion of electron-hole pairs within the carbon nanotube yarn (CNY) due to the functionalization with nanostructured photoactive TiO2 phases is remarkable. A well oriented anatase TiO2 thin layer (approximately 100 nm) forms at the interfaces of CNY and TiO2 mesoporous film when the sample is precoated and annealed at 350°C. Field Emission Scanning Electron Microscopy (FESEM) images show the integrity and homogeneity of the TiO2 surface, which is indicative of the overall durability of the CNY-based dye sensitized solar cell (DSSC); Coating TiO2 on self-aligned carbon nanotube yarns provides several benefits from their high chemical stability, excellent functionality, nontoxicity and relatively low cost. The maximum photon to current conversion efficiency (ηAM1.5) achieved was 3.1%.


2016 ◽  
Vol 93 (5) ◽  
Author(s):  
Xiaodong Zeng ◽  
M. Al-Amri ◽  
Shiyao Zhu ◽  
M. Suhail Zubairy

Sign in / Sign up

Export Citation Format

Share Document