Unsteady Magnetohydrodynamic Hartmann Flow of a Casson Nanofluid Through a Non-Darcian Porous Medium Under an Exponential Decaying Pressure Gradient

2016 ◽  
Vol 5 (3) ◽  
pp. 384-398
Author(s):  
N. T. El-Dabe ◽  
H. A. Attia ◽  
M. A. I. Essawy ◽  
A. A. Ramadan ◽  
A. H. Abdel-Hamid
GIS Business ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 383-394
Author(s):  
K. Shalini ◽  
K.Rajasekhar

In this paper, the effect of Slip and Hall effects on the flow of Hyperbolic tangent fluid through a porous medium in a planar channel with peristalsis under the assumption of long wavelength is investigated. A Closed form solutions are obtained for axial velocity and pressure gradient by employing perturbation technique. The effects of various emerging parameters on the pressure gradient, time averaged volume flow rate and frictional force are discussed with the aid of graphs.


2021 ◽  
Vol 15 (1) ◽  
pp. 1013-1026
Author(s):  
M. M. Rashidi ◽  
M. T. Akolade ◽  
M. M. Awad ◽  
A. O. Ajibade ◽  
I. Rashidi

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ramesh B. Kudenatti ◽  
Shreenivas R. Kirsur ◽  
Achala L. Nargund ◽  
N. M. Bujurke

The two-dimensional magnetohydrodynamic flow of a viscous fluid over a constant wedge immersed in a porous medium is studied. The flow is induced by suction/injection and also by the mainstream flow that is assumed to vary in a power-law manner with coordinate distance along the boundary. The governing nonlinear boundary layer equations have been transformed into a third-order nonlinear Falkner-Skan equation through similarity transformations. This equation has been solved analytically for a wide range of parameters involved in the study. Various results for the dimensionless velocity profiles and skin frictions are discussed for the pressure gradient parameter, Hartmann number, permeability parameter, and suction/injection. A far-field asymptotic solution is also obtained which has revealed oscillatory velocity profiles when the flow has an adverse pressure gradient. The results show that, for the positive pressure gradient and mass transfer parameters, the thickness of the boundary layer becomes thin and the flow is directed entirely towards the wedge surface whereas for negative values the solutions have very different characters. Also it is found that MHD effects on the boundary layer are exactly the same as the porous medium in which both reduce the boundary layer thickness.


1974 ◽  
Vol 14 (03) ◽  
pp. 271-278 ◽  
Author(s):  
Milos Kojic ◽  
J.B. Cheatham

Introduction A number of problems occur in the fields of drilling and rock mechanics for which consideration must be given to the interaction of fluid flow and rock deformation. Such problems include those of borehole stability, chip removal from under a drill bit, drilling in the presence of a fluid pressure gradient between the drilling fluid and formation fluid, and drilling by use of hydraulic jets. We have recently developed a general theory of the influence of fluid pressure gradients and gravity on the plasticity of porous media. The solution of the problem considered here serves as an example of the application of that theory. The illustrative problem is to determine the load required on a flat problem is to determine the load required on a flat axially symmetric punch for incipient plasticity of the porous medium under the punch when fluid flows through the bottom face of the punch. The rock is assumed to behave as a Coulomb plastic material under the influence of body forces plastic material under the influence of body forces due to fluid pressure gradients and gravity. Numerical methods that have been used by Cox et al. for analyzing axially symmetric plastic deformation in soils with gravity force are applied to the problem considered here. Involved is an iterative process for determining the slip lines. The fluid flow field ‘used for calculating the fluid pressure gradient is based upon the work by Ham pressure gradient is based upon the work by Ham in his study of the potential distribution ahead of the bit in rotary drilling. The effective stresses in the porous rock and the punch force for incipient plasticity are computed in terms of the fluid plasticity are computed in terms of the fluid pressure and the cohesive strength and internal pressure and the cohesive strength and internal friction of the rock. PLASTICITY OF POROUS MEDIA PLASTICITY OF POROUS MEDIA A recently developed general theory of plasticity of porous media under the influence of fluid flow is summarized in this section. The equation of motion for the porous solid for the case of incipient plastic deformation reduces to the following equilibrium equation:(1) where Ts is the partial stress tensor of the solid; Fs is the body force acting on the solid per unit volume of the solid material; P is the interaction force between the solid and the fluid; and is the porosity, which is defined as the ratio of the pore porosity, which is defined as the ratio of the pore volume to the total volume of the solid-fluid mixture. The partial stress tensor Ts can be considered as the effective stress tensor that is used in sod mechanics. With the acceptance of the effective stress principle defined in Ref. 5, the yield function, f, in the following form is satisfied for plastic deformation of the porous medium. plastic deformation of the porous medium.(2) where EP is the plastic strain tensor and K and the work-hardening parameter. From the equation of motion for the fluid, the interaction force P can be expressed in the form(3) where is the inertial force of the fluid per unit volume of the mixture and F is the body force acting on the fluid per unit volume of fluid. For the case of incipient plastic deformation the solid can be considered static (velocities of the solid particles are zero), and the problem of determining particles are zero), and the problem of determining the fluid flow field is the one usually analyzed in petroleum engineering. petroleum engineering. Consider a flow of be fluid such that the inertial forces of the fluid can be neglected and assume that Darcy's law is applicable. SPEJ P. 271


1974 ◽  
Vol 14 (03) ◽  
pp. 263-270 ◽  
Author(s):  
Milos Kojic ◽  
J.B. Cheatham

Abstract Plastic deformation of a porous medium containing moving fluid is analyzed as a motion of a solid-fluid mixture. The fluid is considered to be Newtonian, and the porous material consists of interconnected pore spaces and of solid particles that can deform pore spaces and of solid particles that can deform elastically. The effective stress principle and a general form of the yield function-including work-hardening characteristics-and general stress-strain relations are applied to describe the plastic deformation of the solid. The system of plastic deformation of the solid. The system of governing equations with the number of unknowns being equal to the number of equations is formed. A possible method of solution of a general problem is described. Some simplification such as problem is described. Some simplification such as the assumptions of quasi-static plastic deformation and incipient plastic deformation with the application of Darcy's law for the fluid flow are discussed. To illustrate an application of the theory, the problem of incipient plane plastic deformation of a Coulomb material is presented. Introduction The motion of fluid through a porous medium and the deformation of a porous medium containing fluid have been the subjects of many investigations. For problems concerning fluid flow through porous media in petroleum and civil engineering literature, the porous material is usually considered undeformable and Darcy's law is taken as the governing relation between the velocity and the pressure of the fluid. pressure of the fluid. Most of the effort concerning fluidization of porous media has been experimental; here the task porous media has been experimental; here the task is to find the critical pressure gradient or the critical velocity of the fluid that will cause fluidization. Only the one-dimensional equilibrium equation, which relates Ne pressure gradient of the fluid and densities of solid and fluid, has been analyzed in most fluidization studies. Recently, a more general theoretical approach has been taken and equations of motion of fluid and solid have been established. Some of the results of this theory are used in the present study. Previous investigations of the deformation of porous media containing fluid have been both porous media containing fluid have been both empirical and theoretical. In the domain of elastic deformation much of the published material has dealt with experimental work aimed at finding the relation between a change in fluid pressure and stresses and deformation of the solid phase. A general theory of elasticity of porous media containing moving fluid was established by Biot. However, that theory is approximate since Darcy's law is considered as a governing relation for the fluid, and the change of permeability with the deformation of the solid is neglected. A simplification of this theory was presented by Lubinski. Experimental work has been carried out in the domain of plastic deformation of porous media containing fluid. The effective stress principle has been established as a result of experiments using saturated sand and porous rocks with various pore pressures (fluid is static in these experiments. pressures (fluid is static in these experiments. This principle, which is considered as a fundamental principle in soil mechanics, states that the pore principle in soil mechanics, states that the pore pressure does not affect the yield criterion of the pressure does not affect the yield criterion of the solid. In other words, the yield condition of the solid depends only on stresses transmitted among the solid particles. The influence of fluid flow on plasticity of porous media was indicated by Lambe and Whitman porous media was indicated by Lambe and Whitman in the analysis of stability of an infinite slope of a soil. In the equilibrium equation of a so-called "free body" a term equal to the negative pressure gradient is added. There is no general theory for plasticity of porous media containing moving fluid. plasticity of porous media containing moving fluid. GENERAL THEORY Consider the motion of a solid-fluid mixture and suppose that the motion of the solid is a plastic deformation. Then the problem reduces to the following: define the motion of a solid-fluid mixture so that the yield criterion of the solid is satisfied. The mechanical model can be described as follows. 1. The system comprises one fluid and one should constituent. SPEJ P. 263


2002 ◽  
Vol 465 ◽  
pp. 237-260 ◽  
Author(s):  
D. R. GRAHAM ◽  
J. J. L. HIGDON

Numerical computations are employed to study the phenomenon of oscillatory forcing of flow through porous media. The Galerkin finite element method is used to solve the time-dependent Navier–Stokes equations to determine the unsteady velocity field and the mean flow rate subject to the combined action of a mean pressure gradient and an oscillatory body force. With strong forcing in the form of sinusoidal oscillations, the mean flow rate may be reduced to 40% of its unforced steady-state value. The effectiveness of the oscillatory forcing is a strong function of the dimensionless forcing level, which is inversely proportional to the square of the fluid viscosity. For a porous medium occupied by two fluids with disparate viscosities, oscillatory forcing may be used to reduce the flow rate of the less viscous fluid, with negligible effect on the more viscous fluid. The temporal waveform of the oscillatory forcing function has a significant impact on the effectiveness of this technique. A spike/plateau waveform is found to be much more efficient than a simple sinusoidal profile. With strong forcing, the spike waveform can induce a mean axial flow in the absence of a mean pressure gradient. In the presence of a mean pressure gradient, the spike waveform may be employed to reverse the direction of flow and drive a fluid against the direction of the mean pressure gradient. Owing to the viscosity dependence of the dimensionless forcing level, this mechanism may be employed as an oscillatory filter to separate two fluids of different viscosities, driving them in opposite directions in the porous medium. Possible applications of these mechanisms in enhanced oil recovery processes are discussed.


2019 ◽  
Vol 3(2019) (1) ◽  
pp. 59-73 ◽  
Author(s):  
Gbeminiyi Sobamowo ◽  
◽  
Lawrence Jayesimi ◽  
David Oke ◽  
Ahmed Yinusa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document