scholarly journals Nonlinear Thermal Radiation and Chemical Reaction Effects on a (Cu−CuO)/NaAlg Hybrid Nanofluid Flow Past a Stretching Curved Surface

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 962 ◽  
Author(s):  
Naveed Ahmed ◽  
Fitnat Saba ◽  
Umar Khan ◽  
Syed Tauseef Mohyud-Din ◽  
El-Sayed M. Sherif ◽  
...  

The boundary layer flow of sodium alginate ( NaAlg ) based ( Cu − CuO ) hybrid nanofluid, over a curved expanding surface, has been investigated. Heat and mass transport phenomena have also been analyzed. Moreover, the impacts of chemical reaction, magnetic field and nonlinear thermal radiation are also a part of this study. This arrangement has great practical relevance, especially in the polymer and chemical industries. We have extended the Bruggeman model to make it capable of capturing the thermal conductivity of ( Cu − CuO ) / NaAlg hybrid nanofluid. We have employed some suitable transformations to obtain the governing system of nonlinear ODEs. Runge − Kutta − Fehlberg algorithm, accompanied by a shooting technique, has been employed to solve the governing system numerically. The changes in the flow and heat transfer distribution, due to various parameters, have been captured and portrayed in the form of graphs. It has been found that the addition of the nanometer-sized materials, significantly boosts the thermal and heat transport properties of the host fluid, and these phenomena seem to be more prominent, in the case of ( Cu − CuO ) / NaAlg hybrid nanofluid.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Abida Rafiq ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu

Abstract The study of nanofluids is the most debated subject for the last two decades. Researchers have shown great interest owing to the amazing features of nanofluids including heat transfer and thermal conductivity enhancement capabilities. Having such remarkable features of nanofluids in mind we have envisioned a mathematical model that discusses the flow of nanofluid comprising Nickel-Zinc Ferrite-Ethylene glycol (Ni-ZnFe2O4–C2H6O2) amalgamation past an elongated curved surface with autocatalytic chemical reaction. The additional impacts added to the flow model are the heat generation/absorption with nonlinear thermal radiation. At the boundary, the slip and the convective conditions are added. Pertinent transformations are affianced to get the system of ordinary differential equations from the governing system in curvilinear coordinates. A numerical solution is found by applying MATLAB build-in function bvp4c. Graphical illustrations and the numerically computed estimates are discussed and analyzed properly. It is comprehended that velocity and temperature distributions have varied trends near and away from the curve when the curvature parameter is enhanced. Further, it is comprehended that the concentration field declines for both homogeneous and heterogeneous reaction parameters.



Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 76 ◽  
Author(s):  
Naveed Ahmed ◽  
Fitnat Saba ◽  
Umar Khan ◽  
Ilyas Khan ◽  
Tawfeeq Alkanhal ◽  
...  

The main concern is to explore an electro-magneto hydrodynamic (EMHD) squeezing flow of ( A g − F e 3 O 4 / H 2 O ) hybrid nanofluid between stretchable parallel Riga plates. The benefits of the use of hybrid nanofluids, and the parameters associated to it, have been analyzed mathematically. This particular problem has a lot of importance in several branches of engineering and industry. Heat and mass transfer along with nonlinear thermal radiation and chemical reaction effects have also been incorporated while carrying out the study. An appropriate selection of dimensionless variables have enabled us to develop a mathematical model for the present flow situation. The resulting mathematical method have been solved by a numerical scheme named as the method of moment. The accuracy of the scheme has been ensured by comparing the present result to some already existing results of the same problem, but for a limited case. To back our results further we have also obtained the solution by anther recipe known as the Runge-Kutta-Fehlberg method combined with the shooting technique. The error analysis in a tabulated form have also been presented to validate the acquired results. Furthermore, with the graphical assistance, the variation in the behavior of the velocity, temperature and concentration profile have been inspected under the action of various ingrained parameters. The expressions for skin friction coefficient, local Nusselt number and local Sherwood number, in case of ( A g − F e 3 O 4 / H 2 O ) hybrid nanofluid, have been derived and the influence of various parameters have also been discussed.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Purpose The investigation of fluid flow and heat transfer is incredibly significant in the present era, particularly in the engineering and manufacturing industries. Hence, this study aims to concern with analysing the unsteady stagnation point flow towards a permeable stretching/shrinking Riga plate of Al2O3-Cu/H2O. The effect of thermal radiation on the boundary layer flow is also taken into account. Design/methodology/approach The multi-variable differential equations with partial derivatives are transformed into third-order and second-order differential equations by applying appropriate transformations. The reduced mathematical model is solved in the MATLAB system by using the bvp4c procedure. This solution approach is capable of producing multiple solutions once the necessary assumptions are provided. Findings The results of various control parameters were analysed, and it has been observed that raising the solution viscosity from 0% to 0.5% and 1% improves the coefficient of skin friction and thermal conductivity by almost 1.0% and 1.9%. Similar response and observation can be witnessed in the addition of modified Hartmann number where the highest values dominate about 10.7% improvement. There is a substantial enhancement in the heat transfer rate, approximately 1.8% when the unsteadiness parameter leads around 30% in the boundary layer flow. In contrast, the increment in thermal radiation promotes heat transfer deterioration. Further, more than one solution is proven, which invariably leads to a stability analysis, which validates the first solution’s feasibility. Originality/value The present results are new and original for the study of flow and heat transfer on unsteady stagnation point flow past a permeable stretching/shrinking Riga plate in Al2O3-Cu/H2O hybrid nanofluid with thermal radiation.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.



2018 ◽  
Vol 48 (2) ◽  
pp. 744-759 ◽  
Author(s):  
Kh. Hosseinzadeh ◽  
M. Gholinia ◽  
B. Jafari ◽  
A. Ghanbarpour ◽  
H. Olfian ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document