Second Law Analysis for Radiative Magnetohydrodynamics Slip Flow for Two Different Non-Newtonian Fluid with Heat Source

2021 ◽  
Vol 10 (3) ◽  
pp. 447-461
Author(s):  
Amala Olkha ◽  
Amit Dadheech

The present article embraces an entropy analysis on Newtonian and Non-Newtonian fluid due to melting stretching surface in the presence of inclined MHD, non-liner chemical reaction implanted in porous medium with heat source and non-uniform radiations. Also second law analysis and three different fluids namely Casson, Williamson and Viscous fluids has been taken into an account. This work is not priorly performed including the concept of Entropy generation of above mentioned three fluids. Utilizing the exercise of MATLAB tool along with algorithm of Runge-kutta technique the arithmetic manipulations for the thermotic equations, mass concentration and momentum equations are executed. Influence of numerous pertinent parameters are investigated on the flow, heat and mass transfer concepts and are demonstrated graphically. The analysis discovered that Entropy generation is improved for Magnetic field parameter M, porosity parameter Kρ as well as on the inclined magnetic field angle α but the contrary effects are observed on the amount of slip parameter.

2021 ◽  
Vol 16 (1) ◽  
pp. 89-96
Author(s):  
Rizwan Akhtar ◽  
Muhammad Awais ◽  
Muhammad Asif Zahoor Raja ◽  
M. N. Abrar ◽  
Sayyar Ali Shah ◽  
...  

This study has been managed for the investigation of entropy generation of inclined magnetic field (MG) on the Jeffery nanofluid flow on a stretching surface containing viscous dissipation. Heat generation or absorption effects are likewise considered on the magnetohydromagnetic flow problem and electric field is considered negligible. The boundary layer approach is incorporated for simplification of the proposed governing equations in which the target of analysis is focused near the surface of the fluidic problem. The concept of dimensionless parameters are used for simplification of the proposed system which overcomes the complexity of the problem. The relaxation and retardation times are also considered for the non-Newtonian Jeffrey fluid model for better analysis of the entropy generation of inclined MG on the Jeffery nanofluid flow on a stretching surface containing viscous dissipation. The strength of analytical homotopy analysis approach is employed for finding the solutions of the proposed fluidic system in terms of energy, momentum and concentration which is effective in the spatial domain. Graphical explanation for flow parameters have been incorporated. The tabular description is given for the convergence analysis and comparison of velocity gradient at the sheet surface f″ (0) for analytical solution (HAM) computed in this manuscript along with the numerical solution. The aim of second law analysis can be achieved by increasing the magnitude of the finite different temperature parameter. The current study is also described for Newtonian fluid as a special case of our study. Stream lines patterns are also provided for both Newtonian and non-Newtonian fluid models.


Author(s):  
Abbas Kosarineia ◽  
Sajad Sharhani

In this study, the influence of the applied magnetic field is investigated for magneto-micropolar fluid flow through an inclined channel of parallel porous plates with constant pressure gradient. The lower plate is maintained at constant temperature and the upper plate at a constant heat flux. The governing motion and energy equations are coupled while the effect of the applied magnetic field is taken into account, adding complexity to the already highly correlated set of differential equations. The governing equations are solved numerically by explicit Runge–Kutta. The velocity, microrotation, and temperature results are used to evaluate second law analysis. The effects of characteristic and dominate parameters such as Brinkman number, Hartmann Number, Reynolds number, and micropolar viscosity parameter are discussed on velocity, temperature, microrotation, entropy generation, and Bejan number in different diagrams. The results depicted that the entropy generation number rises with the increase in Brinkman number and decays with the increase in Hartmann Number, Reynolds number, and micropolar viscosity parameter. The application of the magnetic field induces resistive force acting in the opposite direction of the flow, thus causing its deceleration. Moreover, the presence of magnetic field tends to increase the contribution of fluid friction entropy generation to the overall entropy generation; in other words, the irreversibilities caused by heat transfer reduced. Therefore, to minimize entropy, Brinkman number and Hartmann Number need to be controlled.


2016 ◽  
Vol 23 (3) ◽  
pp. 1524-1538 ◽  
Author(s):  
A.K. Abdul Hakeem ◽  
M. Govindaraju ◽  
B. Ganga ◽  
M. Kayalvizhi

2016 ◽  
Vol 63 (4) ◽  
pp. 565-587 ◽  
Author(s):  
Nemat Dalir

Abstract Second law analysis (entropy generation) for the steady two-dimensional laminar forced convection flow, heat and mass transfer of an incompressible viscous fluid past a nonlinearly stretching porous (permeable) wedge is numerically studied. The effects of viscous dissipation, temperature jump, and first-order chemical reaction on the flow over the wedge are also considered. The governing boundary layer equations for mass, momentum, energy and concentration are transformed using suitable similarity transformations to three nonlinear ordinary differential equations (ODEs). Then, the ODEs are solved by using a Keller’s box algorithm. The effects of various controlling parameters such as wedge angle parameter, velocity ratio parameter, suction/injection parameter, Prandtl number, Eckert number, temperature jump parameter, Schmidt number, and reaction rate parameter on dimensionless velocity, temperature, concentration, entropy generation number, and Bejan number are shown in graphs and analyzed. The results reveal that the entropy generation number increases with the increase of wedge angle parameter, while it decreases with the increase of velocity ratio parameter. Also, in order to validate the obtained numerical results of the present work, comparisons are made with the available results in the literature as special cases, and the results are found to be in a very good agreement.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 498
Author(s):  
Wasim Ullah Khan ◽  
Muhammad Awais ◽  
Nabeela Parveen ◽  
Aamir Ali ◽  
Saeed Ehsan Awan ◽  
...  

The current study is an attempt to analytically characterize the second law analysis and mixed convective rheology of the (Al2O3–Ag/H2O) hybrid nanofluid flow influenced by magnetic induction effects towards a stretching sheet. Viscous dissipation and internal heat generation effects are encountered in the analysis as well. The mathematical model of partial differential equations is fabricated by employing boundary-layer approximation. The transformed system of nonlinear ordinary differential equations is solved using the homotopy analysis method. The entropy generation number is formulated in terms of fluid friction, heat transfer and Joule heating. The effects of dimensionless parameters on flow variables and entropy generation number are examined using graphs and tables. Further, the convergence of HAM solutions is examined in terms of defined physical quantities up to 20th iterations, and confirmed. It is observed that large λ1 upgrades velocity, entropy generation and heat transfer rate, and drops the temperature. High values of δ enlarge velocity and temperature while reducing heat transport and entropy generation number. Viscous dissipation strongly influences an increase in flow and heat transfer rate caused by a no-slip condition on the sheet.


Sign in / Sign up

Export Citation Format

Share Document