Modified Arrhenius and Thermal Radiation Effects on Three-Dimensional Magnetohydrodynamic Flow of Carbon Nanotubes Nanofluids Over Bi-Directional Stretchable Surface
In the current study, 3D hydro-magnetic flow of CNTs-EG/EO/H2O nanofluids over bi-directional stretchable surface along with linear thermal radiation, modified Arrhenius, thermophoresis and Brownian diffusion are studied. The three base fluids i.e., EG (Ethylene Glycol), EO (Engine Oil) and H2O are considered for the analysis. For computing the effective viscosity and thermal conductivity of nanofluid, Wang’s viscosity model and Hamilton-Crosser’s thermal conductivity model have been used. The system of transformed non-linear ODEs is solved by shooting scheme. The comparison of heat transfer rate in CNTs-EG, CNTs-EO and CNTs-H2O nanofluids is depicted by bar diagrams. The outcomes of the present work showed that MWCNTs based nanofluids have a higher temperature gradient compared to that of SWCNTs based nanofluids. Moreover, temperature distribution corresponding to the engine oil-based nanofluids declined at a very high rate followed by ethylene glycol and water-based nanofluids, respectively.