Effect of inclusion on performance of A6N01 aluminum alloy joints

2020 ◽  
Vol 10 (9) ◽  
pp. 1395-1403
Author(s):  
Mengyu Ding ◽  
Min Yu ◽  
JunWei Hua ◽  
Hui Chen

In order to study the effect of inclusion on performance of A6N01 aluminum alloy joints, the N-A6N01 and C-A6N01 aluminum alloys with different inclusion in amount and size were compared. Results show that the larger inclusions in amount and size in the N-A6N01 joint cause more pronounced degradation in the tensile strength than the C-A6N01 joint. However, the N-A6N01 joint shows a superior fatigue strength to the C-A6N01 under the tensile fatigue, this probably because the degradation in the tensile strength contributes a uniform performance mating between the base metal and WM, which reduces the stress concentration during the tensile loading process, and thus improving the fatigue strength.

2013 ◽  
Vol 456 ◽  
pp. 451-455
Author(s):  
Jun Yang ◽  
Bo Li ◽  
Qiang Jia ◽  
Yuan Xing Li ◽  
Ming Yue Zhang ◽  
...  

Fatigue test of the welded joint of 5083 aluminum alloy with smooth and height of specimen and the weld zone than the high test measurement and theoretical stress concentration coefficient calculation, the weld reinforcement effect of stress concentration on the fatigue performance of welded joints. The results show that: Smooth tensile strength of specimens for 264MPa, fatigue strength is 95MPa, the tensile strength of the 36%. Higher tensile strength of specimens for 320MPa, fatigue strength is 70MPa, the tensile strength of the 22%. Higher specimen stress concentration coefficient is 1.64, the stress concentration to the weld toe becomes fatigue initiation source, and reduces the fatigue strength and the fatigue life of welded joints.


2021 ◽  
Vol 2079 (1) ◽  
pp. 012022
Author(s):  
Yongchao Jian ◽  
Yan Shi

Abstract Because of the uneven distribution of reinforcement particles in the molten pool during laser welding of SiCp/6061Al composites with powder, the effect of pulse frequency on the homogenization was studied in this paper. The pulse frequency of welding is changed and the macro morphology of the weld is studied by metallographic microscope. The particle uniformity of reinforcing phase and the porosity of molten pool at different frequencies were compared. The tensile strength of welded joints at different frequencies was tested by universal tensile machine. Finally, when the pulse frequency is 160Hz, the particle distribution of reinforcing phase is the most uniform and the tensile strength is the largest. The tensile strength reaches 267.06MPa, reaching 69.1% of the base metal. When the pulse frequency is 320Hz, the porosity of the weld is the lowest, reaching 1.75%.


2013 ◽  
Vol 662 ◽  
pp. 251-257
Author(s):  
Ning Xia ◽  
Zhi Min Zhu ◽  
Hui Chen

6005A aluminum alloys were welded at different relative humidity conditions. The effects of relative humidity on the salt fog corrosion of the welding joints were researched. The results showed that the weight loss of the joints after 14 days corrosion was higher than that corroded after 7days, but the corrosion rate was lower. The corrosion rate first increased then declined with the increase of environmental humidity for the joints corroded for 7days. However, when the environmental humidity was 80%, corrosion rate achieved the maximum, when environment humidity was 70%, corrosion rate was the lowest. After corroded for 14 days, corrosion rate was the maximum when the environmental humidity was 50%, and it was the lowest when the environmental humidity was 90%. The tensile strength declined obviously after corrosion.


2002 ◽  
Vol 51 (9Appendix) ◽  
pp. 156-161
Author(s):  
Hiizu OCHI ◽  
Takeshi SAWAI ◽  
Yoshiaki YAMAMOTO ◽  
Masayuki KURITA ◽  
Koichi OGAWA ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1510
Author(s):  
Abootorab Baqerzadeh Chehreh ◽  
Michael Grätzel ◽  
Jean Pierre Bergmann ◽  
Frank Walther

The load increase method, which is highly efficient in rapidly identifying the fatigue performance and strength of materials, is used in this study to investigate friction stir welded (FSW) EN AW-5754 aluminum alloys. Previous investigations have demonstrated the accuracy and efficiency of this method compared to Woehler tests. In this study, it is shown that the load increase method is a valid, accurate and efficient method for describing the fatigue behavior of FSW weld seams. The specimen tests were performed on 2 mm thick aluminum sheets using conventional and stationary tool configurations. It is shown that an increase in fatigue strength of the FSW EN AW-5754 aluminum alloys can be achieved by using the stationary shoulder tool configuration rather than the conventional one.


2007 ◽  
Vol 35 (4) ◽  
pp. 100077
Author(s):  
M. R. Mitchell ◽  
R. E. Link ◽  
Kyohei Kawamoto ◽  
Shintaro Yoshimitsu ◽  
Hiroshi Noguchi ◽  
...  

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 76
Author(s):  
Yanting Gu ◽  
Jilei Zhang

Tensile fatigue performances of selected natural rattan strips (NRSs) and synthetic rattan strips (SRSs) were evaluated by subjecting them to zero-to-maximum constant amplitude cyclic tensile loading. Experimental results indicated that a fatigue life of 25,000 cycles began at the stress level of 50% of rattan material ultimate tensile strength (UTS) value for NRSs evaluated. Rattan core strips’ fatigue life of 100,000 cycles started at the stress level of 30% of its UTS value. Rattan bast strips could start a fatigue life of 100,000 cycles at a stress level below 30% of material UTS value. SRSs didn’t reach the fatigue life of 25,000 cycles until the applied stress level reduced to 40% of material UTS value and reached the fatigue life of 100,000 cycles at the stress level of 40% of material UTS value. It was found that NRSs’ S-N curves (applied nominal stress versus log number of cycles to failure) could be approximated by S=σou(1−H×log10⋅Nf). The constant H values in the equation were 0.10 and 0.08 for bast and core materials, respectively.


1988 ◽  
Vol 110 (4) ◽  
pp. 319-324
Author(s):  
Akira Kato

The effect of laser welding on prevention of the fracture of cracked shafts of a high carbon steel are presented. Static tensile strength and rotary bending fatigue strength were obtained using shaft specimens of AISI W1 which were welded by a CO2 laser around a precrack. Since the welded region became extremely hard and brittle, both the strengths of laser-welded specimens were lower than those of non-welded specimens. However, the strengths were increased higher than those of non-welded specimens after tempering the specimens. It was found that when tempered at 600°C after laser welding, the rotary bending fatigue strength of specimens with a crack smaller than 12 mm rose similar to that of the base metal, and when tempered at 700° C, the static tensile strength of specimens with a crack smaller than 12mm rose similar to that of the base metal. Therefore, it was shown that the laser welding is very effective to prevent fracture of high carbon steels.


Sign in / Sign up

Export Citation Format

Share Document