scholarly journals Fatigue Performance of Natural and Synthetic Rattan Strips Subjected to Cyclic Tensile Loading

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 76
Author(s):  
Yanting Gu ◽  
Jilei Zhang

Tensile fatigue performances of selected natural rattan strips (NRSs) and synthetic rattan strips (SRSs) were evaluated by subjecting them to zero-to-maximum constant amplitude cyclic tensile loading. Experimental results indicated that a fatigue life of 25,000 cycles began at the stress level of 50% of rattan material ultimate tensile strength (UTS) value for NRSs evaluated. Rattan core strips’ fatigue life of 100,000 cycles started at the stress level of 30% of its UTS value. Rattan bast strips could start a fatigue life of 100,000 cycles at a stress level below 30% of material UTS value. SRSs didn’t reach the fatigue life of 25,000 cycles until the applied stress level reduced to 40% of material UTS value and reached the fatigue life of 100,000 cycles at the stress level of 40% of material UTS value. It was found that NRSs’ S-N curves (applied nominal stress versus log number of cycles to failure) could be approximated by S=σou(1−H×log10⋅Nf). The constant H values in the equation were 0.10 and 0.08 for bast and core materials, respectively.

2004 ◽  
Vol 127 (2) ◽  
pp. 213-219 ◽  
Author(s):  
John R. Cotton ◽  
Keith Winwood ◽  
Peter Zioupos ◽  
Mark Taylor

We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, “Analysis of Creep Strain During Tensile Fatigue of Cortical Bone,” J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the “normalized stress” level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.


Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


Author(s):  
Everett McEwen ◽  
George Tsiatas

The fatigue fuse is a device for predicting the fatigue life of steel highway bridge members when the bridge is subject to variable loads. The fuse is calibrated so that the cracking of each of its four legs can be related to damage in the structure. In a preliminary laboratory study, fatigue fuses are attached to eight steel girders, selected to represent three types of structural details found in existing highway bridges. The fuses are cemented to the girders and the girders subjected to a constant-amplitude fatigue loading. Cracking of the fatigue fuses is monitored by checking electrical continuity across each fuse leg. Tests are continued until girder failure or until all fuse legs are broken and the mean fatigue life of the girder as predicted by AASHTO is reached. The breaking of the fuse legs is used to predict the fatigue life of each girder, which is then compared with the actual cycles to failure of the girder and the AASHTO mean life. The prediction gives satisfactory agreement with the AASHTO mean life in four of the tests. In two tests, the predictions vary significantly from the AASHTO mean life. Although several critical issues remain (such as adapting the fatigue fuse to the environment of a real bridge and conducting tests on a statistically valid sample), the results of this feasibility study indicate that the fuse could be a valuable tool for highway bridge inspection.


1998 ◽  
Vol 5 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Larry Byrd ◽  
Michael P. Camden ◽  
Gene E. Maddux ◽  
Larry W. Simmons

The use of micro-channel heat exchangers (MCHEX) with coolant flow passage diameters less than 1 mm has been proposed for heat flux, weight, or volume limited environments. This paper presents room temperature, random amplitude,ε−N(strain versus number of cycles to failure) curves for MCHEX coupons formed by electroplating nickel on a suitable form. These coupons are unique in two aspects; the microstructure formed by electroplating and the presence of holes as an integral part of the structure. The hole diameters range from approximately 10% to 50% to the specimen thickness. The fatigue life of electroformed nickel can be estimated from constant amplitude data using the formulation presented. The heat exchangers with channels parallel to the coupon direction have a lower fatigue life than the solid material.


2015 ◽  
Vol 1115 ◽  
pp. 414-417
Author(s):  
N.M. Shaffiar ◽  
M.K.A. Halim ◽  
H. Anuar ◽  
M.A.H.A. Majid

A small amount of nanodispersed filler leads to an improvement in material properties. Montmorillonite (MMT) is one type of filler commonly used in nanocomposite material. A high density polyethylene/ethylene propylene rubber - montmorillonite (HDPE/EPR-MMT) is one of the nanocomposite material that is new to the industry. This paper investigates the strength of HDPE/EPR-MMT nanocomposite under tensile loading. The experimental results of the tensile test on the nanocomposite will be compared with the tensile simulation in the Finite Element (FE) analysis for validation. The results showed that it is validated with relatively low percentage error of 0.01 % for the ultimate tensile strength and 0.18 % for the yield strength. The ultimate tensile strength of HDPE/EPR-MMT is 14.5 MPa and the yield strength is 13.2 MPa. By using MMT as a filler, the material strength is improved. The ultimate tensile strength of HDPE/EPR without filler is 11.45 MPa and the yield strength is 10.95 MPa.


Author(s):  
Wasim Tarar ◽  
M.-H. Herman Shen

High cycle fatigue is the most common cause of failure in gas turbine engines. Different design tools have been developed to predict number of cycles to failure for a component subjected to fatigue loads. An energy-based fatigue life prediction framework was previously developed in recent research for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. A finite element approach for uniaxial and bending fatigue was developed by authors based on this constitutive law. In this study, the energy expressions that construct the new constitutive law are integrated into minimum potential energy formulation to develop a new QUAD-4 finite element for fatigue life prediction. The newly developed QUAD-4 element is further modified to obtain a plate element. The Plate element can be used to model plates subjected to biaxial fatigue including bending loads. The new QUAD-4 element is benchmarked with previously developed uniaxial tension/compression finite element. The comparison of Finite element method (FEM) results to existing experimental fatigue data, verifies the new finite element development for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element in ascending or descending order. Therefore, the new finite element framework can predict the number of cycles to failure at each location in gas turbine engine structural components. The new finite element provides a very useful tool for fatigue life prediction in gas turbine engine components. The performance of the fatigue finite element is demonstrated by the fatigue life predictions from Al6061-T6 aluminum and Ti-6Al-4V. Results are compared with experimental results and analytical predictions.


2017 ◽  
Vol 44 (4) ◽  
pp. 1-8 ◽  
Author(s):  
T. Kroth ◽  
D. Lellinger ◽  
I. Alig ◽  
M. Wallmichrath

Cyclic fatigue testing and elastomer characterisation were combined to study changes in material properties and network structure of elastomers during thermal ageing. Natural rubber containing a typical additive package with carbon black was studied as a model material. The samples were aged at different temperatures in air or under a nitrogen atmosphere. The fatigue life in number of cycles to failure (S-N curves) was determined from force- and displacement-controlled fatigue tests on tensile bar specimens after different thermal ageing times. Changes in mechanical properties and crosslink density were studied by tensile tests, dynamic mechanical analysis, stress relaxation experiments, compression set measurements, swelling measurements and solid-state NMR. Changes in network density during thermal ageing are related to the interplay between the formation of new crosslinks and chain scission. The average molecular mass of the network chains was found to be a suitable parameter for comparing different characterisation methods. An initial decrease in the molecular mass between two crosslinking points due to post-curing is followed by an increase due to chain scission. A similar trend was found for fatigue life in number of cycles to failure (N) in force-controlled fatigue tests: an increase in N for short ageing times is followed by a decrease after longer ageing times.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ming-Yuan Shen ◽  
Tung-Yu Chang ◽  
Tsung-Han Hsieh ◽  
Yi-Luen Li ◽  
Chin-Lung Chiang ◽  
...  

Graphene nanoplatelets (GNPs) are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, GNPs were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical properties of GNPs/epoxy nanocomposite, such as ultimate tensile strength and flexure properties, were investigated. The fatigue life of epoxy/carbon fiber composite laminate with GPs-added 0.25 wt% was increased over that of neat laminates at all levels of cyclic stress. Consequently, significant improvement in the mechanical properties of ultimate tensile strength, flexure, and fatigue life was attained for these epoxy resin composites and carbon fiber-reinforced epoxy composite laminates.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Morteza Rahimi Abkenar ◽  
David P. Kihl ◽  
Majid T. Manzari

Increasing interest in using aluminum as the structural component of light-weight structures, mechanical devices, and ships necessitates further investigations on fatigue life of aluminum alloys. The investigation reported here focuses on characterizing the performance of cruciform-shaped weldments made of 5083 aluminum alloys in thickness of 9.53 mm (3/8 in.) under constant, random, and bilevel amplitude loadings. The results are presented as S/N curves that show cyclic stress amplitude versus the number of cycles to failure. Statistical procedures show good agreements between test results and predicted fatigue life of aluminum weldments. Moreover, the results are compared to the results obtained from previous experiments on aluminum specimens with thicknesses of 12.7 mm (1/2 in.) and 6.35 mm (1/4 in.).


Author(s):  
Wasim Tarar ◽  
M.-H. Herman Shen

High cycle fatigue is the major governing failure mode in aerospace structures and gas turbine engines. Different design tools are available to predict number of cycles to failure for a component subjected to fatigue loads. An energy-based fatigue life prediction framework was previously developed in recent research for prediction of axial, bending and torsional fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. A 1-D ROD element for unixial fatigue, a BEAM element for bending fatigue and a QUAD-4 element for biaxial fatigue were developed by authors based on this constitutive law. In this study, the energy expressions that construct the new constitutive law are integrated into minimum potential energy formulation to develop a new HEX-8 BRICK finite element for fatigue life prediction. The newly developed HEX-8 BRICK element has 8 nodes and each node has 3 degrees of freedom (DOF) in x, y and z directions. This element is further modified to add the rotational and bending DOFs for application to real world three dimensional (3D) structures and components. HEX-8 BRICK fatigue finite element has capability to predict the number of cycles to failure for 3-D objects subjected to multiaxial stresses. The new HEX-8 element is benchmarked with previously developed uniaxial tension/compression finite element in order to verify the new development. The comparison of finite element method (FEM) results to existing experimental fatigue data, verifies the new finite element development for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element in ascending or descending order. Therefore, the new finite element framework can predict the number of cycles to failure at each location in gas turbine engine structural components. The new finite element provides a very useful tool for fatigue life prediction in gas turbine engine components as it provides a complete picture of fatiguing process. The performance of the HEX-8 fatigue finite element is demonstrated by comparison of life prediction results for A16061-T6 to previously developed multiaxial fatigue life prediction approach by the authors. Another set of comparison is made to results for type 304 stainless steel data.


Sign in / Sign up

Export Citation Format

Share Document