Study on the Mechanism of Cold Tolerance of the Strain Shewanella putrefaciens WS13 Through Fatty Acid Metabolism

2019 ◽  
Vol 11 (12) ◽  
pp. 1718-1723 ◽  
Author(s):  
Li Chen ◽  
Hao Yu ◽  
Shengping Yang ◽  
Yunfang Qian ◽  
Jing Xie

In order to investigate the cold tolerance mechanism of Shewanella, the whole genome of strain Shewanella putrefaciens WS13 was used to study the comparative genome related to cold tolerance of Shewanella . By comparing and analyzing the key enzymes involved in the process of lipid synthesis with those of other psychrophilic and non-psychrophilic bacteria, the results showed that in S. putrefaciens WS13, the genes fabA, fabB, fabD, fabF, fabG, fabH and fabZ, as the key enzymes of fatty acid synthesis, were found in the target strain, but the gene fabI did not exist in the type II fatty acid synthesis pathway. However, due to the absence of the key enzyme fabI gene, the synthesis process of saturated fatty acids will be blocked, and the pathway of unsaturated fatty acid synthesis still exists, which leads to the bacteria Shewanella start to synthesize a large number of unsaturated fatty acids, thus increasing the synthesis of unsaturated fatty acids and reducing the synthesis of saturated fatty acids. It is precisely because unsaturated fatty acids have lower phase transition temperature than that saturated fatty acids have, which can increase the fluidity of biofilm, so that Shewanella has better cold adaptability than that other bacteria have. It is a complex biological process for microorganisms to adapt to the environment, and the biosynthesis of fatty acids is only one aspect. However, the mechanism of cold adaptation of Shewanella in other aspects remains to be further discussed.

1974 ◽  
Vol 142 (3) ◽  
pp. 611-618 ◽  
Author(s):  
D. Michael W. Salmon ◽  
Neil L. Bowen ◽  
Douglas A. Hems

1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of3H from3H2O (1–7μmol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-14C]lactic acid and [U-14C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of3H2O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12–16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with3H2O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.


FEBS Letters ◽  
2005 ◽  
Vol 579 (23) ◽  
pp. 5157-5162 ◽  
Author(s):  
Chang Ji Zheng ◽  
Jung-Sung Yoo ◽  
Tae-Gyu Lee ◽  
Hee-Young Cho ◽  
Young-Ho Kim ◽  
...  

1975 ◽  
Vol 150 (3) ◽  
pp. 441-451 ◽  
Author(s):  
S R Sooranna ◽  
E D Saggerson

1. When rat isolated fat-cells were incubated with fructose and palmitate, insulin significantly stimulated glyceride synthesis as measured by either [14C]fructose incorporation into the glycerol moiety or of [3H]palmitate incorporation into the acyl moiety of tissue glycerides. Under certain conditions the effect of insulin on glyceride synthesis was greater than the effect of insulin on fructose uptake. 2. In the presence of palmitate, insulin slightly stimulated (a) [14C]pyruvate incorporation into glyceride glycerol of fat-cells and (b) 3H2O incorporation into glyceride glycerol of incubated fat-pads. 3. At low extracellular total concentrations of fatty acids (in the presence of albumin), insulin stimulated [14C]fructose, [14C]pyruvate and 3H2O incorporation into fat-cell fatty acids. Increasing the extracellular fatty acid concentration greatly inhibited fatty acid synthesis from these precursors and also greatly decreased the extent of apparent stimulation of fatty acid synthesis by insulin. 4. These results are discussed in relation to the suggestion [A.P. Halestrap & R.M Denton (1974) Biochem. J. 142, 365-377] that the tissue may contain a specific acyl-binding protein which is subject to regulation. It is suggested that an insulin-sensitive enzyme component of the glyceride-synthesis process may play such a role.


1971 ◽  
Vol 49 (5) ◽  
pp. 563-567 ◽  
Author(s):  
W. E. Donaldson ◽  
Nancy S. Mueller

Oxidation, synthesis, and desaturation of fatty acids were assessed in chick embryos and embryonic liver. No differences in the oxidation of palmitate-1-14C and oleate-1-14C by intact embryos and embryo-liver homogenates were found. De novo fatty acid synthesis and microsomal elongation of fatty acids were detected in embryo-liver homogenates, but the activities were low as compared with chick liver. The specific activities of the mitochondrial system of fatty acid elongation were similar in embryo and chick liver. Stimulation of the desaturation of stearic acid was achieved by the substitution of glucose for fatty acids in the culture medium and abolished by the addition of cyclopropene fatty acids to the medium. The hypothesis is advanced that in chick embryos, the rate of desaturation of fatty acids synthesized de novo is less than that of postembryonic liver, and that as a consequence, the liver of embryos cannot maintain the proportion of unsaturated to saturated fatty acids found in yolk.


1980 ◽  
Vol 191 (3) ◽  
pp. 791-797 ◽  
Author(s):  
B R Jordan ◽  
J L Harwood

The synthesis of fatty acids from [14C]malonyl-CoA was studied with a high-speed particulate fraction from germinating pea (Pisum sativum). The variety used (Feltham First) produced mainly saturated fatty acids with palmitate (30–40%) and stearate (40–60%) predominating. Several palmitate-containing lipids stimulated overall synthesis and, in addition, increased the percentage of label in stearate. The production of stearate was severely inhibited by preincubation of the microsomal fraction with snake venom phospholipase A2 or by incubation with Rhizopus arrhizus lipase. Addition of a series of di-saturated phosphatidylcholines, with different acyl constituents, resulted in stimulation of overall fatty acid synthesis as well as an increase in the radiolabelling of the fatty acid two carbon atoms longer than the acyl chain added. This chain lengthening of fatty acids donated from phosphatidylcholine was due to the action of both fatty acid synthetase and palmitate elongase. The latter would utilize dipalmitoyl phosphatidylcholine and was sensitive to arsenite whereas fatty acid synthetase would use dilauroyl phosphatidylcholine and was sensitive to cerulenin. The results are discussed in relation to previous data obtained in vivo on plant fatty acid synthesis and current suggestions for the role of phosphatidylcholine in this process.


2007 ◽  
Vol 2007 ◽  
pp. 240-240
Author(s):  
Sasiphan Wongsuthavas ◽  
Chalermpol Yuangklang ◽  
Jamlong Mitchaothai ◽  
Kraisit Vasupen ◽  
Anton Beynen

From previous reports indicate that broiler chickens fed diets enriched with polyunsaturated fatty acids have less abdominal fat or total body fat (Sanz et al., 1999) deposition than do broiler chickens fed diets containing saturated fatty acids. In general, body fat accumulation may be considered the net result of the balance among dietary absorbed fat, endogenous fat synthesis (lipogenesis) and fat catabolism via β-oxidation (lypolysis). Thus, if the amount of absorbed fat is the same, lower body fat deposition may be attributed to increased fat catabolism or diminished endogenous fatty acid synthesis or to both process. Differences in lipid oxidation rates seem to be the main mechanism involved in this effect. Supplementation of unsaturated fatty acids in diets can be enhanced fat catabolism and reduced fatty acid synthesis were reported to occur in rats fed polyunsaturated fatty acid rich in diets compared with rats fed diets enriched with saturated fatty acids (Crespo and Esteve-Garcia, 2002). Polyunsaturated fatty acids rich in diet effect on fat absorption were increased. In, contrast amount of abdominal fat deposition was decreased. It may be that the polyunsaturated fatty acid was higher rate fat oxidation or lower rate of fatty acid synthesis or both. The present study was undertaken to determine the effect of amount of beef tallow versus soybean oil absorbed is the same on energy intake, energy excretion, energy retention and energy expenditure of broiler chickens.


2019 ◽  
Author(s):  
Kai Liu ◽  
Shugang Zhao ◽  
Shuang Wang ◽  
Hongxia Wang ◽  
Zhihua Zhang

Abstract Background Walnut fatty acids, the main component of walnut kernels, contain a large amount of unsaturated fatty acids, such as linoleic acid and linolenic acid, which are essential fatty acids in humans and have important effects on human growth and health. Fatty acid desaturase (FAD) is widely distributed throughout the biological world. Its main function is to remove hydrogen from carbon chains in the biosynthesis of unsaturated fatty acids to synthesize C=C double bonds.Results In the current research, 25 members of the JrFAD gene family were identified by bioinformatics analysis; the expression of fatty acid synthesis genes in walnut kernels at different developmental stages was analysed by transcriptome sequencing, and the expression of JrFAD3-1 , an enzyme gene for linolenic acid synthesis, was particularly prominent. The results showed that the relative expression level of FAD3-1 changed dramatically with the kernel development stage, and the expression changes showed a "bell shape". There was a significant positive correlation between the expression of JrFAD3-1 from 90-100 days after anthesis and the content of alpha-linolenic acid from 100-130 days after anthesis, with a correlation coefficient of 0.991. JrFAD3-1 can be considered closely related to Betula pendula and Corylus heterophylla .Conclusion 25 walnut kernels FAD genes were identified and comprehensive analyzed for the first time. The function of a walnut kernels FAD3-1 gene was also characterized from its location in the phylogeny. This work lays a theoretical foundation for the regulation of unsaturated fatty acid synthesis and provide techniques and methods for the creation of new germplasm.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


Sign in / Sign up

Export Citation Format

Share Document