Selenium Nanoparticles Induce Cytotoxicity and Apoptosis in Human Breast Cancer (MCF-7) and Liver (HepG2) Cell Lines

2020 ◽  
Vol 12 (3) ◽  
pp. 324-330
Author(s):  
Abdulsalam A. Alkhudhayri ◽  
Rizwan Wahab ◽  
Maqsood A. Siddiqui ◽  
Javed Ahmad

This investigation was designed to assess the cytotoxic and apoptotic effects of selenium nanoparticles. It explored the cytotoxic effects of selenium nanoparticles in MCF-7 and HepG2 cell lines. The morphology of selenium nanoparticles was analyzed by transmission electron microscopy (TEM) to verify their size and crystalline properties. The selenium nanoparticles were almost spherical and cubic in shape and in size (∼20 nm). Selenium nanoparticles were tested for their cytotoxic activity in MCF-7 and HepG2 cell lines using MTT and NRU assays. We found relative differences in the vulnerability of both cell lines in their response to selenium nanoparticle-induced cytotoxicity. Specifically, MCF-7 cells exhibited greater vulnerability to exposure to selenium nanoparticles than HepG2 cells. Selenium nanoparticles exposure also induced higher mRNA levels of apoptosis related genes and caspase-3 enzyme activity. Overall, the present study provided the evidence of cytotoxicity induced by SeNPs via apoptotic gene expression in human cell lines. These results warrant further investigation into more precise mechanism(s) of selenium nanoparticles-induced cell death in in vivo model systems.

RSC Advances ◽  
2015 ◽  
Vol 5 (20) ◽  
pp. 15547-15558 ◽  
Author(s):  
Niraj Kumar Vishwakarma ◽  
Vijay Kumar Patel ◽  
Sumit Kumar Hira ◽  
K. Ramesh ◽  
Prateek Srivastava ◽  
...  

DOX-loaded β-CD-PNVP shows more effective delivery of DOX compared to free DOX towards the U2-OS, MCF-7 and HEPG2 cell lines.


2019 ◽  
Vol 18 (11) ◽  
pp. 1606-1616 ◽  
Author(s):  
Mehlika D. Altıntop ◽  
Belgin Sever ◽  
Ahmet Özdemir ◽  
Sinem Ilgın ◽  
Özlem Atlı ◽  
...  

Background and Methods: In an attempt to develop potent antitumor agents, the synthesis of a series of N-(6-substituted benzothiazol-2-yl)-2-[(5-(arylamino)-1,3,4-thiadiazol-2-yl)thio]acetamides (1-14) was described and their cytotoxic effects on A549 human lung adenocarcinoma, MCF-7 human breast adenocarcinoma, HepG2 human hepatocellular carcinoma and NIH/3T3 mouse embryonic fibroblast cell lines were investigated using MTT assay. <p> Results: Phenyl-substituted compounds (8-14) were found to be more effective than naphthyl-substituted compounds (1-7) on cancer cells. Compounds 8, 9, 10, 12, 13 and 14 were identified as the most potent anticancer agents on MCF-7 and HepG2 cell lines and therefore their effects on DNA synthesis and apoptosis/necrosis in MCF-7 cell line were evaluated. Among these compounds, N-(6-methoxybenzothiazol-2-yl)-2-[(5- (phenylamino)-1,3,4-thiadiazol-2-yl)thio]acetamide (13) was the most selective anticancer agent against MCF-7 and HepG2 cell lines with a SI value of 100. On the other hand, compounds 8, 9, 10, 12, 13 and 14 inhibited DNA synthesis in MCF-7 cell line in a dose-dependent manner. Flow cytometric analyses clearly indicated that the compounds showed significant anticancer activity against MCF-7 cell line via the induction of apoptosis dose dependently. <p> Conclusion: According to in vitro assays, compounds 8, 9, 10, 12, 13 and 14 stand out as promising candidates for further studies.


2021 ◽  
Vol 3 (2) ◽  
pp. 231-244
Author(s):  
Saranya Rameshbabu ◽  
Mohammed S. Ali ◽  
Abrar B. Alsaleh ◽  
Anuradha Venkatraman ◽  
Safia A. Messaoudi

Cell line authentication using Short Tandem Repeats (STRs) is necessary to ensure the integrity of the cell for its continuous culture and to identify misidentification and cross-contamination issues. This study investigates the changes in the genetic profile of MCF-7 and HepG2 cell lines caused by the methanolic leaf extract of Anastatica hierochuntica (AH) using human identification based STR markers. MCF-7 and HepG2 cell lines were treated with various concentrations of AH extracts for three different periods. The treated and control cells' DNA was extracted using a QIAamp® DNA Micro Kit, quantified using a Quantifiler Duo DNA Quantification Kit, and amplified using an AmpFlSTR Identifiler plus PCR Amplification Kit. The concentrations of the DNA extracted from control and MCF-7 and HepG2 cell lines treated with AH extract at 300 to 2400 µg/ml for 24hr and 150 to 2400 µg/ml for 48 and 72hrs were statistically significant (p<0.05). Microsatellite instability (MSI), loss of heterozygosity (LOH), insertion/deletions changes in the STRs profile were observed in treated cell lines at 1200 and 2400 µg/ml in MCF-7 cells for 48 and 72hrs and HepG2 cells for 24, 48, and 72hrs. We conclude that the highest concentration of AH extracts affected the genotype of the cell lines leading to misidentification. Therefore, cell line authentication by forensic DNA analysis techniques plays a decisive role for cells tested with a high concentration of chemical compounds and gives the forensic investigator an insight into these changes in the STR genotype of a victim/suspect who has been been under long term chemotherapeutic treatment.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (09) ◽  
pp. 7-14
Author(s):  
U Joshi ◽  
◽  
A Anantram ◽  
A Joshi ◽  
K Gokhale ◽  
...  

Flavones, flavonols, flavanones and isoflavones constitute four important categories of naturally occurring flavonoids. These compounds possess good antiproliferative activity and can act as adjuvants to existing anticancer therapy. We have synthesized twenty synthetic flavonoids including flavones, flavonols, flavanones and isoflavones using Claisen-Schmidt condensation, Baker-Venkataraman rearrangement and related reactions. The synthesized compounds were evaluated for antiproliferative activity against MCF-7, K562 and HepG2 cell lines. Flavanones showed good activity against HepG2 cell lines whereas some flavones and isoflavones were active in inhibiting the growth of K562 and MCF-7 cell lines. The study underlines the importance of electron rich substituents on the B-ring of synthetic flavonoids.


RSC Advances ◽  
2015 ◽  
Vol 5 (101) ◽  
pp. 82736-82742 ◽  
Author(s):  
Yan-Jun Sun ◽  
Zhi-You Hao ◽  
Jin-Guang Si ◽  
Yu Wang ◽  
Yan-Li Zhang ◽  
...  

Thirteen new prenylated flavonoids were isolated from Sinopodophyllum emodi together with eleven known analogues. Compound 22 exhibited the most potent cytotoxicity against MCF-7 and HepG2 cell lines.


2020 ◽  
Vol 17 ◽  
Author(s):  
Tarek Faris ◽  
Gamaleldin I. Harisa ◽  
Fars K. Alanazi ◽  
Mohamed M. Badran ◽  
Afraa Mohammad Alotaibi ◽  
...  

Aim: This study aimed to explore an affordable technique for the fabrication of Chitosan Nanoshuttles (CSNS) at the ultrafine nanoscale less than 100 nm with improved physicochemical properties, and cytotoxicity on the MCF-7 cell line. Background: Despite several studies reported that the antitumor effect of CS and CSNS could achieve intracellular compartment target ability, no enough available about this issue and further studies are required to address this assumption. Objectives: The objective of the current study was to investigate the potential processing variables for the production of ultrafine CSNS (> 100 nm) using Box-Benhken Design factorial design (BBD). This was achieved through a study of the effects of processing factors, such as CS concentration, CS/TPP ratio, and pH of the CS solution, on PS, PDI, and ZP. Moreover, the obtained CSNS was evaluated for physicochemical characteristics, morphology Also, hemocompatibility, and cytotoxicity using Red Blood Cells (RBCs) and MCF-7 cell lines were investigated. Methods: Box-Benhken Design factorial design (BBD) was used in the analysis of different selected variables. The effects of CS concentration, sodium tripolyphosphate (TPP) ratio, and pH on particle size, Polydispersity Index (PDI), and Zeta Potential (ZP) were measured. Subsequently, the prepared CS nanoshuttles were exposed to stability studies, physicochemical characterization, hemocompatibility, and cytotoxicity using red blood cells and MCF-7 cell lines as surrogate models for in vivo study. Result: The present results revealed that the optimized CSNS have ultrafine nanosize, (78.3±0.22 nm), homogenous with PDI (0.131±0.11), and ZP (31.9±0.25 mV). Moreover, CSNS have a spherical shape, amorphous in structure, and physically stable. Also, CSNS has biological safety as indicated by a gentle effect on red blood cell hemolysis, besides, the obtained nanoshuttles decrease MCF-7 viability. Conclusion: The present findings concluded that the developed ultrafine CSNS has unique properties with enhanced cytotoxicity. thus promising for use in intracellular organelles drug delivery.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document