Study on Electrochemical Stripping Method of Graphene Electrode and Its Capacitive Properties

2021 ◽  
Vol 13 (4) ◽  
pp. 608-614
Author(s):  
Qi Qin ◽  
Yi-Ran Cui ◽  
Meng Song ◽  
Ji-Yuan Li ◽  
Yan-Jie Wang ◽  
...  

Graphene has excellent properties, such as excellent conductivity, more pores, stable chemical and structural properties, high specific surface area, so it is usually used in the battery fields. In order to further explore the capacitive properties of graphene, this experiment used electrochemical stripping method, the electrochemical electrode was characterized by constant potential treatment methods, cyclic voltammetry curve, and constant current charging–discharging curve. The capacitive performance of modified graphene at different potentials was compared. If a constant potential peeling treatment is performed, the interlayer spacing of graphene increases, and this time, the specific surface area is enlarged, and the electrical properties of the graphene electrode material are correspondingly improved. Cyclic voltammetry curve results show that the graphene electrode exhibits better capacitance performance after being treated with a constant potential in neutral electrolyte. When treating with 3.1 V constant potential and voltage range of -1.1 V–1.1 V, capacitance can reach 327.273 F. The chronopotentiometry curve results show that 3.1 V graphene electrode mass ratio capacitance can reach 218.182 F/g under voltage range of -0.3 V–0.3 V, meeting the energy storage requirements of the battery industry, and it is expected to become an ideal electrode material in the field of supercapacitors.

2021 ◽  
Author(s):  
Pengxi Li ◽  
Jiepeng Wang ◽  
Liming Li ◽  
Shili Song ◽  
Xianming Yuan ◽  
...  

ZnMoO4 with oxygen vacancy (ZnMoO4-OV) porous nanosheet was synthesized by hydrothermal synthesis and hydrogenation reduction method. The ZnMoO4-OV porous nan sheet delivers a higher specific surface area together with a...


2017 ◽  
Vol 727 ◽  
pp. 698-704 ◽  
Author(s):  
Xian Wei Wang ◽  
Xiao Er Wang ◽  
Hui Chao Zhang ◽  
Qian Qian Zhu ◽  
Dong Li Zheng ◽  
...  

The structural and electrochemical properties of lanthanum manganate (LaMnO3) powder prepared by the sol-gel method are researched in this article. The powder calcined at 600 °C showed amorphous, and the powder calcined at 700-800 °C showed the pure phase of the LaMnO3. The grains with the size of about 80-120 nm were agglomerating together. Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical properties in alkaline environment. The electrochemical properties calcined at 700 °C showed a specific capacitance of 73 F/g at the current density of 0.5 A/g. The raw materials for preparing the LaMnO3 powder are cheap, and the operation method is simple.


2018 ◽  
Vol 6 (47) ◽  
pp. 24603-24613 ◽  
Author(s):  
Xing Zhou ◽  
Xiaohui Li ◽  
Dejian Chen ◽  
Danyang Zhao ◽  
Xintang Huang

Ultrathin layered double hydroxide (LDH) nanosheets are a promising candidate as the electrode material for energy storage due to the ultrafast mass diffusion and greater specific surface area.


2016 ◽  
Vol 45 (3) ◽  
pp. 164-171 ◽  
Author(s):  
Linjie Su ◽  
Bohong Li ◽  
Dongyu Zhao ◽  
Chuanli Qin ◽  
Zheng Jin

Purpose The purpose of this paper is to prepare a new modified activated carbon fibers (ACFs) of high specific capacitance used for electrode material of supercapacitor. Design/methodology/approach In this study, the specific capacitance of ACF was significantly increased by using the phenolic resin microspheres and melamine as modifiers to prepare modified PAN-based activated carbon fibers (MACFs) via electrospinning, pre-oxidation and carbonization. The symmetrical supercapacitor (using MACF as electrode) and hybrid supercapacitor (using MACF and activated carbon as electrodes) were tested in term of electrochemical properties by cyclic voltammetry, AC impedance and cycle stability test. Findings It was found that the specific capacitance value of the modified fibers were increased to 167 Fg-1 by adding modifiers (i.e. 20 wt.% microspheres and 15 wt.% melamine) compared to that of unmodified fibers (86.17 Fg-1). Specific capacitance of modified electrode material had little degradation over 10,000 cycles. This result can be attributed to that the modifiers embedded into the fibers changed the original morphology and enhanced the specific surface area of the fibers. Originality/value The modified ACFs in our study had high specific surface area and significantly high specific capacitance, which can be applied as efficient and environmental absorbent, and advanced electrode material of supercapacitor.


2008 ◽  
Vol 8 (3) ◽  
pp. 1494-1496 ◽  
Author(s):  
Xu Chun Song ◽  
Yi Fan Zheng ◽  
E. Yang ◽  
Yun Wang

The α-MnO2 spherical assemblies were prepared via a facile hydrothermal approach in the presence of sodium dodecyl sulfate (SDS). The assembled nanostructures were composed of the MnO2 nanorods with 150–200 nm in width and several micrometers in length. The products were characterized by SEM, TEM and XRD. The electrochemical characterization was carried out by cyclic voltammetry, which indicated that the α-MnO2 spherical assemblies were of an excellent electrode material for supercapacitor.


2020 ◽  
Vol 851 ◽  
pp. 3-8
Author(s):  
Ade Rifaldi ◽  
Fariati ◽  
Husni Wahyu Wijaya ◽  
Wiwin Dwi Jayanti ◽  
Stephane Golhen ◽  
...  

Prussian Blue Like (PBL) compounds that are potentially used as K-Ion Battery (KIB) electrodes have been synthesized from zinc(II) chloride and quinoline (Qn) precursors combining melting and direct reaction method. The formed K2[Zn(Qn)2][Co(SCN)6] compounds melt in range 179-181°C with conductivity value reaches 468 μS/cm. Thiocyanate and quinoline ligands were characterized using FT-IR and UV-Vis spectrometry. The cyclic voltammetry of the formed compounds showed the reduction potential up to -0.34 V (versus AgCl/Ag).


2019 ◽  
Vol 7 (16) ◽  
pp. 9656-9664 ◽  
Author(s):  
Nadeem Hussain ◽  
Wenjuan Yang ◽  
Jianmin Dou ◽  
Yanan Chen ◽  
Yitai Qian ◽  
...  

Two-dimensional (2D) nanomaterials with a high specific surface area and mesoporous nature are attractive and have wide applications in catalysis, energy storage systems, etc.


2002 ◽  
Vol 57 (1) ◽  
pp. 92-98 ◽  
Author(s):  
Şeniz Özalp Yaman ◽  
Emren Esentürk ◽  
Ceyhan Kayran ◽  
Ahmet M. Önal

The electrochemical behaviour of pentacarbonyl(pyrazine)metal(0) complexes of the group 6 elements was studied by cyclic voltammetry in dichloromethane-(n-Bu)4NBF4 solventelectrolyte couple at -20°C vs. Ag/Ag+ or SCE reference electrode. Constant potential electrolyses of the complexes were carried out at their first oxidation peak potentials and monitored in situ by UV-Vis spectrometry. Electrolysis of W(CO)5pz produces [W(CO)5pz]+ and a similar electrochemical mechanism is expected both for Cr(CO)5pz and Mo(CO)5pz complexes. In situ low temperature constant current ESR electrolysis also confirmed the production of [W(CO)5pz]+ after the electron transfer.


Sign in / Sign up

Export Citation Format

Share Document