Molecular Imprinted Titania Sol–Gel Layer for Conductometric Sensing of p-Nitrophenol

2014 ◽  
Vol 12 (11) ◽  
pp. 1682-1687 ◽  
Author(s):  
Tajamal Hussain ◽  
Hifza Munir ◽  
Adnan Mujahid ◽  
Muhammad Umar Farooq ◽  
Khurram Shehzad ◽  
...  
Keyword(s):  
Sol Gel ◽  
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 631
Author(s):  
Narges Shaabani ◽  
Nora W. C. Chan ◽  
Abebaw B. Jemere

A molecularly imprinted sol-gel is reported for selective and sensitive electrochemical determination of the drug naloxone (NLX). The sensor was developed by combining molecular imprinting and sol-gel techniques and electrochemically grafting the sol solution onto a functionalized multiwall carbon nanotube modified indium-tin oxide (ITO) electrode. The sol-gel layer was obtained from acid catalyzed hydrolysis and condensation of a solution composed of triethoxyphenylsilane (TEPS) and tetraethoxysilane (TES). The fabrication, structure and properties of the sensing material were characterized via scanning electron microscopy, spectroscopy and electrochemical techniques. Parameters affecting the sensor’s performance were evaluated and optimized. A sensor fabricated under the optimized conditions responded linearly between 0.0 µM and 12 µM NLX, with a detection limit of 0.02 µM. The sensor also showed good run-to-run repeatability and batch-to-batch performance reproducibility with relative standard deviations (RSD) of 2.5–7.8% (n = 3) and 9.2% (n = 4), respectively. The developed sensor displayed excellent selectivity towards NLX compared to structurally similar compounds (codeine, fentanyl, naltrexone and noroxymorphone), and was successfully used to measure NLX in synthetic urine samples yielding recoveries greater than 88%.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 243
Author(s):  
Diana Horkavcová ◽  
Quentin Doubet ◽  
Gisèle Laure Lecomte-Nana ◽  
Eva Jablonská ◽  
Aleš Helebrant

The sol-gel method provides a wide variety of applications in the medical field. One of these applications is the formation of coatings on the metal implants. The coatings containing specific additive can enhance or improve the existing surface properties of the substrate. In this work, titania sol-gel coatings were doped with two forms of silver (AgNO3, Ag3PO4) and synthetic hydroxyapatite and applied on the titanium samples by dip-coating technique. After drying and slow firing, all coatings were characterized with scanning electron microscopy. Thin coatings were successfully prepared with excellent adhesion to the substrate (measured by ASTM D 3359-2), despite cracks. Coatings containing silver and hydroxyapatite demonstrated a 100% antibacterial effect against Escherichia coli after 24 h. The bioactivity of the coatings containing hydroxyapatite tested in modified simulated body fluid under static-dynamic conditions was confirmed by bone-like hydroxyapatite precipitation. To better understand the interaction of the coatings with simulated body fluid (SBF), changes of Ca2+ and (PO4)3− ions concentrations and pH values were studied.


RSC Advances ◽  
2015 ◽  
Vol 5 (129) ◽  
pp. 106485-106491 ◽  
Author(s):  
A. Foroozan E. ◽  
R. Naderi

In this study, the effect of coating composition on the protective performance of an eco-friendly silane sol–gel film applied on a mild steel substrate was investigated using electrochemical impedance spectroscopy and surface analysis methods.


2018 ◽  
Vol 89 (1) ◽  
pp. 244-254 ◽  
Author(s):  
Cyrille Delneuville ◽  
Emeric P. Danloy ◽  
Li Wang ◽  
Bao-Lian Su

Author(s):  
D Horkavcova ◽  
M Cerny ◽  
L Sanda ◽  
P Novak ◽  
E Jablonska ◽  
...  

2009 ◽  
Vol 148 (1-2) ◽  
pp. 103-108 ◽  
Author(s):  
Rosendo López ◽  
Ricardo Gómez ◽  
María Elena Llanos

2003 ◽  
Vol 489 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Ting Zhang ◽  
Bozhi Tian ◽  
Jilie Kong ◽  
Pengyuan Yang ◽  
Baohong Liu

2007 ◽  
Vol 280-283 ◽  
pp. 1609-1612 ◽  
Author(s):  
Xiao Feng Chen ◽  
Ying Jun Wang ◽  
Na Ru Zhao ◽  
Jian Dong Ye ◽  
Yu Dong Zheng ◽  
...  

The biomaterials in system CaO-P2O5-SiO2 were synthesized via sol-gel method. The biomaterials can be applied to bone reparation and bone tissue engineering scaffolds The nano-pore structure, degradability, bioactivity and bio-mineralization characteristic of the biomaterials were investigated in details using XRD, SEM/EDX, FTIR, BET and DSC/TG techniques. It was indicated that the sol-gel derived biomaterials have a higher bioactivity than that of the melt derived bioactive glasses or glass-ceramics. It just takes 4-8 hours for HCA to form on the surface of the sol-gel samples in SBF solution at 37°C. The spherical HCA crystal clusters formed on the surface of the sol-gel derived samples immersed in SBF for 8 hours have a low crystallinity. Owing to their interconnected nano-sized pores, the sol-gel samples possess much higher surface areas and the hydrous porous SiO2 gel layer containing a great amount of ºSi-OH groups can be rapidly formed on the biomterials’ surface through a quick ion exchange between H3O+ in the solution and Ca2+ in the surface of the materials. ºSi-OH groups can play a very important role in inducing formation of HCA. They make the material surfaces electronegative, which resulted in a double electrode layer formed between the samples surface and SBF solution. The double electrode layer is in favor of formation of HCA on the surface of the materials.


2020 ◽  
Vol 46 (16) ◽  
pp. 26273-26281 ◽  
Author(s):  
Rocío Estefanía Rojas-Hernandez ◽  
Luís F. Santos ◽  
Rui M. Almeida

Sign in / Sign up

Export Citation Format

Share Document