Experimental Investigations on a Compressed Natural Gas Operated Dual Fuel Engine

Author(s):  
N. Kapilan ◽  
Chandramohan Somayaji ◽  
P. Mohanan ◽  
R. P. Reddy

In the present work, an attempt has been made for the effective utilization of Compressed Natural Gas (CNG) in diesel engine. A four stroke, single cylinder diesel engine was modified to work on dual fuel mode. The effect of CNG flow rate and Exhaust Gas Recirclulation (EGR) on the performance and emissions of the dual fuel engine was studied. The variables considered for the tests were different CNG flow rates (0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 kg/hr), EGR (0 %, 4.28 %, 6.63 % and 8.12 %) and loads (25 %, 50 %, 75 % and 100 % of full load). From the test results, it was observed that the EGR rate of 4.28 % results in better brake thermal efficiency and lower CO and NOx emissions than other ERG rates at 25 %, 50% and 75% of full loads. At full load, EGR rate of 8.12 % results in higher brake thermal efficiency and lower NOx emissions.

2019 ◽  
Vol 8 (2) ◽  
pp. 1902-1905

The present energy scenario hydrogen fuel plays a dominant role in the power generation. Due to its unique characteristics of an extensive range of flammability, high flame speed, and diffusivity. In this present investigation, the diesel engine is converted into dual-fuel mode devoid of major conversions of the engine. The tests are performed on a dual-fuel mode and investigated the efficiency, emissions, and combustion features of the diesel engine. In the present context, hydrogen and biogas are injected from the inlet manifold as subsidiary fuel and diesel are injected as pilot fuel. The gaseous fuel injected in two different flow rates they are, 3 litres per minute (lpm), and 4lpm. The results from the experimentation revealed that the diesel with 4 lpm of hydrogen shows the 31.11 % enhancement of brake thermal efficiency but it shows 4.14% higher NOX emissions when compared with the pure diesel. But it shows. At the same time diesel with 4 lpm of Biogas exhibits 15.90% enhancement of brake thermal efficiency and 8.96% decrease in the NOX emissions in contrast to that of the single-mode of fuel with diesel.


Author(s):  
C. V. Sudhir ◽  
Vijay Desai ◽  
Y. Suresh Kumar ◽  
P. Mohanan

Reducing the emissions and fuel consumption for IC engines are no longer the future goals; instead they are the demands of today. People are concerned about rising fuel costs and effects of emissions on the environment. The major contributor for the increased levels of pollutants is the Diesel engines. Diesel engine finds application in almost in all fields, including transportation sector such as buses, trucks, railway engines, etc. and in industries as power generating units. In the present work an attempt is made for effective utilization of diesel engine aiming for reduction in fuel consumption and smoke density. This is achieved by some minor modifications in diesel engine, so as to run the existing diesel engine as a LPG-Diesel dual-fuel engine with LPG (Liquefied Petroleum Gas) induction at air intake. The important aspect of LPG-Diesel dual-fuel engine is that it shows significant reduction in smoke density and improved brake thermal efficiency with reduced energy consumption. An existing 4-S, single cylinder, naturally aspirated, water-cooled, direct injection, CI engine test rig was used for the experimental purpose. With proper instrumentation the tests were conducted under various LPG flow rates, loads, and injection timings. The influence of the diesel replacement by LPG on smoke density, brake specific energy consumption and brake thermal efficiency were studied. The optimal diesel replacement pertaining to the maximum allowable LPG gas flow limits could be assessed with these experiments. The influence of the injection timing variation on the engine performance and smoke density were analyzed form the experimental results. It was also observed that beyond half load operation of the dual-fuel engine, the brake thermal efficiency increases with diesel replacement, and at full load up to 4% improvement was observed compared to full diesel operation. At full load reduction in smoke density up to 25–36% was observed compared to full diesel operation. At advance injection timing of 30°btdc the performance was better with lower emissions compared to normal and retarded injection timings.


2020 ◽  
Vol 6 ◽  
Author(s):  
Shouvik Dev ◽  
Hongsheng Guo ◽  
Brian Liko

Diesel fueled compression ignition engines are widely used in power generation and freight transport owing to their high fuel conversion efficiency and ability to operate reliably for long periods of time at high loads. However, such engines generate significant amounts of carbon dioxide (CO2), nitrogen oxides (NOx), and particulate matter (PM) emissions. One solution to reduce the CO2 and particulate matter emissions of diesel engines while maintaining their efficiency and reliability is natural gas (NG)-diesel dual-fuel combustion. In addition to methane emissions, the temperatures of the diesel injector tip and exhaust gas can also be concerns for dual-fuel engines at medium and high load operating conditions. In this study, a single cylinder NG-diesel dual-fuel research engine is operated at two high load conditions (75% and 100% load). NG fraction and diesel direct injection (DI) timing are two of the simplest control parameters for optimization of diesel engines converted to dual-fuel engines. In addition to studying the combined impact of these parameters on combustion and emissions performance, another unique aspect of this research is the measurement of the diesel injector tip temperature which can predict potential coking issues in dual-fuel engines. Results show that increasing NG fraction and advancing diesel direct injection timing can increase the injector tip temperature. With increasing NG fraction, while the methane emissions increase, the equivalent CO2 emissions (cumulative greenhouse gas effect of CO2 and CH4) of the engine decrease. Increasing NG fraction also improves the brake thermal efficiency of the engine though NOx emissions increase. By optimizing the combustion phasing through control of the DI timing, brake thermal efficiencies of the order of ∼42% can be achieved. At high loads, advanced diesel DI timings typically correspond to the higher maximum cylinder pressure, maximum pressure rise rate, brake thermal efficiency and NOx emissions, and lower soot, CO, and CO2-equivalent emissions.


2020 ◽  
Vol 12 (3) ◽  
pp. 129-136
Author(s):  
Avinash MUTLURI ◽  
Radha Krishna GOPIDESI ◽  
Srinivas Viswanath VALETI

In the present research a diesel engine has been converted to dual fuel mode, injecting hydrogen and biogas as secondary fuel and the tests were conducted in dual fuel mode to evaluate the performance, emissions and combustion parameters of the engine. Diesel as a pilot fuel, hydrogen and biogas as a secondary fuel were injected from the inlet manifold. The hydrogen and the biogas which is a gaseous fuel were injected at 5 liters per minute (lpm) and the tests were conducted separately. From these tests, it was noted that there is an enhancement of 27.28% in brake thermal efficiency (BTE) and increment of 10.70% in NOX emissions for diesel with 5 lpm hydrogen compared with diesel fuel under single fuel mode. Also, it was noted that the reduction in BTE was around 36.50% and NOX emissions about 15.68 % for diesel with 5 lpm biogas when compared with diesel fuel under single fuel mode.


2020 ◽  
Vol 18 (2) ◽  
pp. 108-112
Author(s):  
Ashok Kumar ◽  
Piyushi Nautiyal ◽  
Kamalasish Dev

The present study is investigated on the performance and emissions characteristics of a diesel engine fuelled by compressed natural gas and base diesel (CNG + Diesel). The CNG fuels used as the primary fuel, and diesel as pilot fuel under dual-fuel mode. The pilot fuel is partially replaced by CNG at a different percentage. The primary fuel is injected into the engine with intake air during the suction stroke. The experimental results reveal the effect of CNG + diesel under dual fuel mode on BTE, BSFC, CO, CO2, HC, NOx and Smoke. It is observed from the experimental results that CO2, NOx and Smoke emissions decreased but HC and CO emissions increase with an increase in CNG energy share.


2021 ◽  
Vol 9 (2) ◽  
pp. 123
Author(s):  
Sergejus Lebedevas ◽  
Lukas Norkevičius ◽  
Peilin Zhou

Decarbonization of ship power plants and reduction of harmful emissions has become a priority in the technological development of maritime transport, including ships operating in seaports. Engines fueled by diesel without using secondary emission reduction technologies cannot meet MARPOL 73/78 Tier III regulations. The MEPC.203 (62) EEDI directive of the IMO also stipulates a standard for CO2 emissions. This study presents the results of research on ecological parameters when a CAT 3516C diesel engine is replaced by a dual-fuel (diesel-liquefied natural gas) powered Wartsila 9L20DF engine on an existing seaport tugboat. CO2, SO2 and NOx emission reductions were estimated using data from the actual engine load cycle, the fuel consumption of the KLASCO-3 tugboat, and engine-prototype experimental data. Emission analysis was performed to verify the efficiency of the dual-fuel engine in reducing CO2, SO2 and NOx emissions of seaport tugboats. The study found that replacing a diesel engine with a dual-fuel-powered engine led to a reduction in annual emissions of 10% for CO2, 91% for SO2, and 65% for NOx. Based on today’s fuel price market data an economic impact assessment was conducted based on the estimated annual fuel consumption of the existing KLASCO-3 seaport tugboat when a diesel-powered engine is replaced by a dual-fuel (diesel-natural gas)-powered engine. The study showed that a 33% fuel costs savings can be achieved each year. Based on the approved methodology, an ecological impact assessment was conducted for the entire fleet of tugboats operating in the Baltic Sea ports if the fuel type was changed from diesel to natural gas. The results of the assessment showed that replacing diesel fuel with natural gas achieved 78% environmental impact in terms of NOx emissions according to MARPOL 73/78 Tier III regulations. The research concludes that new-generation engines on the market powered by environmentally friendly fuels such as LNG can modernise a large number of existing seaport tugboats, significantly reducing their emissions in ECA regions such as the Baltic Sea.


Author(s):  
Liu Shenghua ◽  
Zhou Longbao ◽  
Wang Ziyan ◽  
Ren Jiang

The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NOx and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Abhishek Paul ◽  
Subrata Bhowmik ◽  
Rajsekhar Panua ◽  
Durbadal Debroy

The present study surveys the effects on performance and emission parameters of a partially modified single cylinder direct injection (DI) diesel engine fueled with diesohol blends under varying compressed natural gas (CNG) flowrates in dual fuel mode. Based on experimental data, an artificial intelligence (AI) specialized artificial neural network (ANN) model have been developed for predicting the output parameters, viz. brake thermal efficiency (Bth), brake-specific energy consumption (BSEC) along with emission characteristics such as oxides of nitrogen (NOx), unburned hydrocarbon (UBHC), carbon dioxide (CO2), and carbon monoxide (CO) emissions. Engine load, Ethanol share, and CNG strategies have been used as input parameters for the model. Among the tested models, the Levenberg–Marquardt feed-forward back propagation with three input neurons or nodes, two hidden layers with ten neurons in each layer and six output neurons, and tansig-purelin activation function have been found to the optimal model topology for the diesohol–CNG platforms. The statistical results acquired from the optimal network topology such as correlation coefficient (0.992–0.999), mean square error (MSE) (0.0001–0.0009), and mean absolute percentage error (MAPE) (0.09–2.41%) along with Nash–Sutcliffe coefficient of efficiency (NSE), Kling–Gupta efficiency (KGE), mean square relative error, and model uncertainty established itself as a real-time robust type machine learning tool under diesohol–CNG paradigms. The study also incorporated a special type of measure, namely Pearson's Chi-square test or goodness of fit, which brings up the model validation to a higher level.


Author(s):  
T. Lakshmanan ◽  
A. Khadeer Ahmed ◽  
G. Nagarajan

Gaseous fuels are good alternative fuels to improve the energy crisis of today’s situation due to its clean burning characteristics. However, the incidence of backfire and knock remains a significant barrier in commercialization. With the invention of latest technology, the above barriers are eliminated. One such technique is timed injection of water into the intake port. In the present investigation, acetylene was aspirated in the intake manifold of a single cylinder diesel engine, with a gas flow rate of 390 g/h, along with water injected in the intake port, to overcome the backfire and knock problems in gaseous dual fuel engine. The brake thermal efficiency and emissions such as NOx, smoke, CO, HC, CO2 and exhaust gas temperature were studied. Dual fuel operation of acetylene induction with injection of water results in lowered NOx emissions with complete elimination of backfire and knock at the expense of brake thermal efficiency.


Sign in / Sign up

Export Citation Format

Share Document