Unique Gene Expression Profiles of Donor-Matched Human Retinal and Choroidal Vascular Endothelial Cells

2007 ◽  
Vol 48 (6) ◽  
pp. 2676 ◽  
Author(s):  
Justine R. Smith ◽  
Dongseok Choi ◽  
Timothy J. Chipps ◽  
Yuzhen Pan ◽  
David O. Zamora ◽  
...  
2018 ◽  
Vol 25 (4) ◽  
pp. e12450 ◽  
Author(s):  
Mingming Liu ◽  
Wenbao Lu ◽  
Qunxing Hou ◽  
Bing Wang ◽  
Youming Sheng ◽  
...  

2015 ◽  
Vol 7 ◽  
pp. 157-165 ◽  
Author(s):  
Zhengda Sun ◽  
Devon A. Lawson ◽  
Elizabeth Sinclair ◽  
Chih-Yang Wang ◽  
Ming-Derg Lai ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuan-chi Teng ◽  
Alfredo Leonardo Porfírio-Sousa ◽  
Giulia Magri Ribeiro ◽  
Marcela Corso Arend ◽  
Lindolfo da Silva Meirelles ◽  
...  

Abstract Background Peripheral arterial disease (PAD) affects millions of people and compromises quality of life. Critical limb ischemia (CLI), which is the most advanced stage of PAD, can cause nonhealing ulcers and strong chronic pain, and it shortens the patients’ life expectancy. Cell-based angiogenic therapies are becoming a real therapeutic approach to treat CLI. Pericytes are cells that surround vascular endothelial cells to reinforce vessel integrity and regulate local blood pressure and metabolism. In the past decade, researchers also found that pericytes may function as stem or progenitor cells in the body, showing the potential to differentiate into several cell types. We investigated the gene expression profiles of pericytes during the early stages of limb ischemia, as well as the alterations in pericyte subpopulations to better understand the behavior of pericytes under ischemic conditions. Methods In this study, we used a hindlimb ischemia model to mimic CLI in C57/BL6 mice and explore the role of pericytes in regeneration. To this end, muscle pericytes were isolated at different time points after the induction of ischemia. The phenotypes and transcriptomic profiles of the pericytes isolated at these discrete time points were assessed using flow cytometry and RNA sequencing. Results Ischemia triggered proliferation and migration and upregulated the expression of myogenesis-related transcripts in pericytes. Furthermore, the transcriptomic analysis also revealed that pericytes induce or upregulate the expression of a number of cytokines with effects on endothelial cells, leukocyte chemoattraction, or the activation of inflammatory cells. Conclusions Our findings provide a database that will improve our understanding of skeletal muscle pericyte biology under ischemic conditions, which may be useful for the development of novel pericyte-based cell and gene therapies.


2018 ◽  
Vol 19 (9) ◽  
pp. 2546 ◽  
Author(s):  
Xiao Mao ◽  
Stephanie Byrum ◽  
Nina Nishiyama ◽  
Michael Pecaut ◽  
Vijayalakshmi Sridharan ◽  
...  

Astronauts are reported to have experienced some impairment in visual acuity during their mission on the International Space Station (ISS) and after they returned to Earth. There is emerging evidence that changes in vision may involve alterations in ocular structure and function. To investigate possible mechanisms, changes in protein expression profiles and oxidative stress-associated apoptosis were examined in mouse ocular tissue after spaceflight. Nine-week-old male C57BL/6 mice (n = 12) were launched from the Kennedy Space Center on a SpaceX rocket to the ISS for a 35-day mission. The animals were housed in the mouse Habitat Cage Unit (HCU) in the Japan Aerospace Exploration Agency (JAXA) “Kibo” facility on the ISS. The flight mice lived either under an ambient microgravity condition (µg) or in a centrifugal habitat unit that produced 1 g artificial gravity (µg + 1 g). Habitat control (HC) and vivarium control mice lived on Earth in HCUs or normal vivarium cages, respectively. Quantitative assessment of ocular tissue demonstrated that the µg group induced significant apoptosis in the retina vascular endothelial cells compared to all other groups (p < 0.05) that was 64% greater than that in the HC group. Proteomic analysis showed that many key pathways responsible for cell death, cell repair, inflammation, and metabolic stress were significantly altered in µg mice compared to HC animals. Additionally, there were more significant changes in regulated protein expression in the µg group relative to that in the µg + 1 g group. These data provide evidence that spaceflight induces retinal apoptosis of vascular endothelial cells and changes in retinal protein expression related to cellular structure, immune response and metabolic function, and that artificial gravity (AG) provides some protection against these changes. These retinal cellular responses may affect blood–retinal barrier (BRB) integrity, visual acuity, and impact the potential risk of developing late retinal degeneration.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Ken’ichiro Hayashi ◽  
Toshiyuki Murai ◽  
Hiroki Oikawa ◽  
Tomoyuki Masuda ◽  
Kazuhiro Kimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document