scholarly journals ISG15 Acts as a Mediator of Innate Immune Response to Pseudomonas aeruginosa Infection in C57BL/6J Mouse Corneas

2020 ◽  
Vol 61 (5) ◽  
pp. 26
Author(s):  
Nan Gao ◽  
Rao Me ◽  
Chenyang Dai ◽  
Fu-shin X. Yu
Author(s):  
Stéphane Pont ◽  
Anne-Béatrice Blanc-Potard

The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected patients with cystic fibrosis (CF). Considering the intrinsic and acquired resistance of P. aeruginosa to currently used antibiotics, new therapeutic strategies against this pathogen are urgently needed. Whereas virulence factors of P. aeruginosa are well characterized, the interplay between P. aeruginosa and the innate immune response during infection remains unclear. Zebrafish embryo is now firmly established as a potent vertebrate model for the study of infectious human diseases, due to strong similarities of its innate immune system with that of humans and the unprecedented possibilities of non-invasive real-time imaging. This model has been successfully developed to investigate the contribution of bacterial and host factors involved in P. aeruginosa pathogenesis, as well as rapidly assess the efficacy of anti-Pseudomonas molecules. Importantly, zebrafish embryo appears as the state-of-the-art model to address in vivo the contribution of innate immunity in the outcome of P. aeruginosa infection. Of interest, is the finding that the zebrafish encodes a CFTR channel closely related to human CFTR, which allowed to develop a model to address P. aeruginosa pathogenesis, innate immune response, and treatment evaluation in a CF context.


2005 ◽  
Vol 107 (3-4) ◽  
pp. 201-215 ◽  
Author(s):  
Douglas D. Bannerman ◽  
Annapoorani Chockalingam ◽  
Max J. Paape ◽  
Jayne C. Hope

2010 ◽  
Vol 78 (11) ◽  
pp. 4542-4550 ◽  
Author(s):  
Ryan T. Phennicie ◽  
Matthew J. Sullivan ◽  
John T. Singer ◽  
Jeffrey A. Yoder ◽  
Carol H. Kim

ABSTRACT Cystic fibrosis (CF) is a genetic disease caused by recessive mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is associated with prevalent and chronic Pseudomonas aeruginosa lung infections. Despite numerous studies that have sought to elucidate the role of CFTR in the innate immune response, the links between CFTR, innate immunity, and P. aeruginosa infection remain unclear. The present work highlights the zebrafish as a powerful model organism for human infectious disease, particularly infection by P. aeruginosa. Zebrafish embryos with reduced expression of the cftr gene (Cftr morphants) exhibited reduced respiratory burst response and directed neutrophil migration, supporting a connection between cftr and the innate immune response. Cftr morphants were infected with P. aeruginosa or other bacterial species that are commonly associated with infections in CF patients, including Burkholderia cenocepacia, Haemophilus influenzae, and Staphylococcus aureus. Intriguingly, the bacterial burden of P. aeruginosa was found to be significantly higher in zebrafish Cftr morphants than in controls, but this phenomenon was not observed with the other bacterial species. Bacterial burden in Cftr morphants infected with a P. aeruginosa ΔLasR mutant, a quorum sensing-deficient strain, was comparable to that in control fish, indicating that the regulation of virulence factors through LasR is required for enhancement of infection in the absence of Cftr. The zebrafish system provides a multitude of advantages for studying the pathogenesis of P. aeruginosa and for understanding the role that innate immune cells, such as neutrophils, play in the host response to acute bacterial infections commonly associated with cystic fibrosis.


2006 ◽  
Vol 74 (12) ◽  
pp. 6682-6689 ◽  
Author(s):  
Avinash Sonawane ◽  
Jeevan Jyot ◽  
Russell During ◽  
Reuben Ramphal

ABSTRACT Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors triggers an innate immune response to colonizing or invading bacteria. Conversely, many bacteria have evolved mechanisms to dampen this response by downregulating the synthesis of such PAMPs. We have previously demonstrated that Pseudomonas aeruginosa growing in mucopurulent human respiratory mucus from cystic fibrosis patients represses the expression of its flagellin, a potent stimulant of the innate immune response. Here we demonstrate that this phenomenon occurs in response to the presence of neutrophil elastase in such mucus. Nonpurulent mucus from animals had no such repressive effect. Furthermore, lysed neutrophils from human blood reproduced the flagellin-repressive effect ex mucus and, significantly, had no effect on the viability of this organism. Neutrophil elastase, a component of the innate host defense system, has been described to be bactericidal for gram-negative bacteria and to degrade bacterial virulence factors. Thus, the resistance of P. aeruginosa to the bactericidal effect of neutrophil elastase, as well as this organism's ability to sense this enzyme's presence and downregulate the synthesis of a PAMP, may be the key factors in allowing P. aeruginosa to colonize the lungs. These findings demonstrate the dynamic nature of this bacterium's response to host defenses that ensures its success as a colonizer and also highlights the dual nature of defense molecules that confer advantages and disadvantages to both hosts and pathogens.


Sign in / Sign up

Export Citation Format

Share Document