Numerical Modeling of Bioluminescence Distributions in the Coastal Ocean*

2003 ◽  
Vol 20 (7) ◽  
pp. 1060-1068 ◽  
Author(s):  
Igor Shulman ◽  
Steven H. D. Haddock ◽  
Dennis J. McGillicuddy ◽  
Jeffrey D. Paduan ◽  
W. Paul Bissett

Abstract Bioluminescence (BL) predictability experiments (predictions of the intensity, depth, and distance offshore of the BL maximum) were conducted using an advective–diffusive tracer model with velocities and diffusivities from a fine-resolution model of the Monterey Bay, California, area. For tracer initialization, observations were assimilated into the tracer model while velocities and diffusivities were taken from the hydrodynamic model and kept unchanged during the initialization process. This dynamic initialization procedure provides an equilibrium tracer distribution that is balanced with the velocity and diffusivity fields from the hydrodynamic model. This equilibrium BL distribution was used as the initial BL field for 3 days of prognostic calculations. Two cross-shore surveys of bioluminescence data conducted at two locations (north of the bay and inside the bay) were used in four numerical experiments designed to estimate the limits of bioluminescence predictions by tracers. The cross-shore sections extended to around 25 km offshore, they were around 30 m deep, and on average they were approximately 35 km apart from each other. Bioluminescence predictability experiments demonstrated a strong utility of the tracer model (combined with limited bioluminescence observations and with the output from a circulation model) in predicting (over a 72-h period and over 25–35-km distances) the location and intensity of the BL maximum. Analysis of the model velocity fields and observed and model-predicted bioluminesence fields shows that the BL maximum is located in the frontal area representing a strong reversal of flow direction.

1984 ◽  
Vol 106 (1) ◽  
pp. 72-78 ◽  
Author(s):  
D. E. Olson ◽  
K. H. Parker ◽  
B. Snyder

This report describes the theory and operation of a pulsed-probe anemometer designed to measure steady three-dimensional velocity fields typical of pulmonary tracheo-bronchial airflows. Local velocities are determined by measuring the transport time and orientation of a thermal pulse initiated at an upstream wire and sensed at a downstream wire. The transport time is a reproducible function of velocity and the probe wire spacing, as verified by a theoretical model of convective heat transfer. When calibrated the anemometer yields measurements of velocity accurate to ±5 percent and resolves flow direction to within 1 deg at airspeeds ≥10 cm/s. Spatial resolution is ±0.5 mm. Measured flow patterns typical of curved circular pipes are included as examples of its application.


2006 ◽  
Vol 3 (3) ◽  
pp. 637-669 ◽  
Author(s):  
S. Natale ◽  
R. Sorgente ◽  
S. Gaberšek ◽  
A. Ribotti ◽  
A. Olita

Abstract. Ocean forecasts over the Central Mediterranean, produced by a near real time regional scale system, have been evaluated in order to assess their predictability. The ocean circulation model has been forced at the surface by a medium, high or very high resolution atmospheric forcing. The simulated ocean parameters have been compared with satellite data and they were found to be generally in good agreement. High and very high resolution atmospheric forcings have been able to form noticeable, although short-lived, surface current structures, due to their ability to detect transient atmospheric disturbances. The existence of the current structures has not been directly assessed due to lack of measurements. The ocean model in the slave mode was not able to develop dynamics different from the driving coarse resolution model which provides the boundary conditions.


2018 ◽  
Author(s):  
Paul C. Rivera

The formation of tsunami swirls near the coast is an obvious oceanographic phenomenon during the occurrence of giant submarine earthquakes and mega-tsunamis. Several tsunami vortices were generated during the Asian tsunami of 2004 and the great Japan tsunami of March 2011 which lasted for several hours.New models of tsunami generation and propagation are hereby proposed and were used to investigate the tsunami inception, propagation and associated formation of swirls in the eastern coast of Japan. The proposed generation model assumes that the tsunami was driven by current oscillations at the seabed induced by the submarine earthquake. The major aim of this study is to develop a tsunami model to simulate the occurrence of tsunami swirls. Specifically, this study attempts to simulate and understand the formation of the mysterious tsunami swirls in the northeast coast of Japan. In addition, this study determines the vulnerability of the Philippines to destructive tsunami waves that originate near Japan. A coarse-resolution model was therefore developed in a relatively large area encompassing Japan Sea and the eastern Philippine Sea. On the other hand, a fine-resolution model was implemented in a small area off Sendai coast near the epicenter. The model result was compared with the tsunami record obtained from the National Data Buoy Center with relatively good agreement as far as the height and period of the tsunami are concerned. Furthermore, the fine-resolution model was able to simulate the occurrence of tsunami vortices off Sendai coast with various sizes that lasted for several hours.


2021 ◽  
Vol 345 ◽  
pp. 00029
Author(s):  
Tomasz Staśko ◽  
Mirosław Majkut ◽  
Sławomir Dykas ◽  
Krystian Smołka

A fan with cycloidal rotor (CRF) becomes a popular idea in wide application such as aviation, HVAC (heat, ventilation and air conditioning) or marine propeller systems. This is due to advantages such as direct control of the flow direction, larger flow rates than in a conventional machines without cycloidal control. In the presented article, velocity fields of CRF placed in a rectangular channel was measured, using Laser Doppler Anemomentry (LDA) method and thermoanemometric probe (TA).


2016 ◽  
Vol 33 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Lucile Gaultier ◽  
Clément Ubelmann ◽  
Lee-Lueng Fu

AbstractConventional altimetry measures a one-dimensional profile of sea surface height (SSH) along the satellite track. Two-dimensional SSH can be reconstructed using mapping techniques; however, the spatial resolution is quite coarse even when data from several altimeters are analyzed. A new satellite mission based on radar interferometry is scheduled to be launched in 2020. This mission, called Surface Water and Ocean Topography (SWOT), will measure SSH at high resolution along a wide swath, thus providing two-dimensional images of the ocean surface topography. This new capability will provide a large amount of data even though they are contaminated with instrument noise and geophysical errors. This paper presents a tool that simulates synthetic observations of SSH from the future SWOT mission using SSH from any ocean general circulation model (OGCM). SWOT-like data have been generated from a high-resolution model and analyzed to investigate the sampling and accuracy characteristics of the future SWOT data. This tool will help explore new ideas and methods for optimizing the retrieval of information from future SWOT missions.


2021 ◽  
pp. 50-66
Author(s):  
V. N. Stepanov ◽  
◽  
Yu. D. Resnyanskii ◽  
B. S. Strukov ◽  
A. A. Zelen’ko ◽  
...  

The quality of simulation of model fields is analyzed depending on the assimilation of various types of data using the PDAF software product assimilating synthetic data into the NEMO global ocean model. Several numerical experiments are performed to simulate the ocean–sea ice system. Initially, free model was run with different values of the coefficients of horizontal turbulent viscosity and diffusion, but with the same atmospheric forcing. The model output obtained with higher values of these coefficients was used to determine the first guess fields in subsequent experiments with data assimilation, while the model results with lower values of the coefficients were assumed to be true states, and a part of these results was used as synthetic observations. The results are analyzed that are assimilation of various types of observational data using the Kalman filter included through the PDAF to the NEMO model with real bottom topography. It is shown that a degree of improving model fields in the process of data assimilation is highly dependent on the structure of data at the input of the assimilation procedure.


Author(s):  
Vasileios Charisopoulos ◽  
Damek Davis ◽  
Mateo Díaz ◽  
Dmitriy Drusvyatskiy

Abstract We consider the task of recovering a pair of vectors from a set of rank one bilinear measurements, possibly corrupted by noise. Most notably, the problem of robust blind deconvolution can be modeled in this way. We consider a natural nonsmooth formulation of the rank one bilinear sensing problem and show that its moduli of weak convexity, sharpness and Lipschitz continuity are all dimension independent, under favorable statistical assumptions. This phenomenon persists even when up to half of the measurements are corrupted by noise. Consequently, standard algorithms, such as the subgradient and prox-linear methods, converge at a rapid dimension-independent rate when initialized within a constant relative error of the solution. We complete the paper with a new initialization strategy, complementing the local search algorithms. The initialization procedure is both provably efficient and robust to outlying measurements. Numerical experiments, on both simulated and real data, illustrate the developed theory and methods.


1992 ◽  
Vol 38 (128) ◽  
pp. 3-8 ◽  
Author(s):  
Peter G. Knight

AbstractThis paper describes fine-resolution measurements of glacier surface strain rates very close to the margin of Russell Glacier, West Greenland. Measurements at a small scale make possible detailed analysis of strain patterns close to the glacier margin, and suggest that strain rates vary over small areas. The strain pattern is determined by ice flexure over subglacial obstacles as well as by seasonally variable marginal retardation and by the orientation of the ice margin relative to the flow direction.


2018 ◽  
Vol 20 (5) ◽  
pp. 1100-1110 ◽  
Author(s):  
Szeląg Bartosz ◽  
Adam Kiczko ◽  
Jan Studziński ◽  
Lidia Dąbek

Abstract The study compares an annual number of weir overflows calculated using a hydrodynamic model by continuous simulations and a probabilistic model. The weir outflow for a single precipitation event was successfully modelled using logistic regression. Performed numerical experiments showed that the calculated number of weir outflows with the hydrodynamic model falls within confidence intervals of the probabilistic model. This suggests that the model of the logistic regression can be used in practice. The probabilistic simulations revealed that a model with a probabilistic description of a number of annual precipitations and a model with an assumed average number of such events are not consistent. The proposed methodology can be applied for the design of outflow weirs and other storm devices.


Sign in / Sign up

Export Citation Format

Share Document