scholarly journals A Reanalysis of the 1911–20 Atlantic Hurricane Database

2008 ◽  
Vol 21 (10) ◽  
pp. 2138-2168 ◽  
Author(s):  
Christopher W. Landsea ◽  
David A. Glenn ◽  
William Bredemeyer ◽  
Michael Chenoweth ◽  
Ryan Ellis ◽  
...  

Abstract A reanalysis of the Atlantic basin tropical storm and hurricane database (“best track”) for the period of 1911–20 has been completed. This reassessment of the main archive for tropical cyclones of the North Atlantic Ocean, Caribbean Sea, and Gulf of Mexico was necessary to correct systematic biases and random errors in the data as well as to search for previously unrecognized systems. A methodology for the reanalysis process for revising the track and intensity of tropical cyclone data is provided in detail. The dataset now includes several new tropical cyclones, excludes one system previously considered a tropical storm, makes generally large alterations in the intensity estimates of most tropical cyclones (both toward stronger and weaker intensities), and typically adjusts existing tracks with minor corrections. Average errors in intensity and track values are estimated for both open ocean conditions as well as for landfalling systems. Finally, highlights are given for changes to the more significant hurricanes to impact the United States, Central America, and the Caribbean for this decade.

2012 ◽  
Vol 25 (3) ◽  
pp. 865-885 ◽  
Author(s):  
Christopher W. Landsea ◽  
Steve Feuer ◽  
Andrew Hagen ◽  
David A. Glenn ◽  
Jamese Sims ◽  
...  

Abstract A reanalysis of the Atlantic basin tropical storm and hurricane database (“best track”) for the period from 1921 to 1930 has been completed. This reassessment of the main archive for tropical cyclones of the North Atlantic Ocean, Caribbean Sea, and Gulf of Mexico was necessary to correct systematic biases and random errors in the data as well as to search for previously unrecognized systems. The methodology for the reanalysis process for revising the track and intensity of tropical cyclone data has been detailed in a previous paper on the reanalysis. The 1921–30 dataset now includes several new tropical cyclones, excludes one system previously considered a tropical storm, makes generally large alterations in the intensity estimates of most tropical cyclones (both toward stronger and weaker intensities), and typically adjusts existing tracks with minor corrections. Average uncertainty in intensity and track values is estimated for both open-ocean conditions as well as landfalling systems. Highlights are given for changes to the more significant hurricanes to impact the United States, Central America, and the Caribbean for this decade.


2014 ◽  
Vol 27 (16) ◽  
pp. 6093-6118 ◽  
Author(s):  
Christopher W. Landsea ◽  
Andrew Hagen ◽  
William Bredemeyer ◽  
Cristina Carrasco ◽  
David A. Glenn ◽  
...  

Abstract A reanalysis of the Atlantic basin tropical storm and hurricane database (“best track”) for the period from 1931 to 1943 has been completed as part of the Atlantic Hurricane Database Reanalysis Project. This reassessment of the main archive for tropical cyclones of the North Atlantic Ocean, Caribbean Sea, and Gulf of Mexico was necessary to correct systematic biases and random errors in the data as well as to search for previously unrecognized systems. Methodology for the reanalysis process for revising the track and intensity of tropical cyclone data is largely unchanged from that of the preceding couple of decades and has been detailed in a previous paper on the reanalysis. Accurate Environmental Forecasting’s numerical weather prediction-based wind field model was utilized here to help determine which states were impacted by various hurricane force winds in several U.S. landfalling major hurricanes during this era. The 1931–43 dataset now includes 23 new tropical cyclones, excludes five systems previously considered tropical storms, makes generally large alterations in the intensity estimates of most tropical cyclones (at various times both toward stronger and weaker intensities), and typically adjusts existing tracks with minor corrections. Average errors in intensity and track values are estimated for both open ocean conditions as well as for landfalling systems. Finally, highlights are given for changes to the more significant hurricanes to impact the United States, Central America, and the Caribbean for this time period.


2012 ◽  
Vol 25 (13) ◽  
pp. 4441-4460 ◽  
Author(s):  
Andrew B. Hagen ◽  
Donna Strahan-Sakoskie ◽  
Christopher Luckett

Abstract The main historical archive of all tropical storms, subtropical storms, and hurricanes in the North Atlantic Ocean, Caribbean Sea, and Gulf of Mexico from 1851 to the present is known as the Atlantic hurricane database (HURDAT), which is the fundamental database for meteorological, engineering, and financial studies of these cyclones. Previous work has demonstrated that a reanalysis of HURDAT is necessary because it contains many random errors and systematic biases. The Atlantic Hurricane Reanalysis Project is an ongoing effort to correct the errors in HURDAT and to make HURDAT as accurate a database as possible with utilization of all available data. For this study, HURDAT is reanalyzed for the period 1944–53, the first decade of the “aircraft reconnaissance era.” The track and intensity of each existing tropical cyclone in HURDAT are reassessed, and previously unrecognized tropical cyclones are discovered, analyzed, and recommended to the HURDAT Best Track Change Committee for inclusion into HURDAT (existing tropical cyclones may be removed from the database as well if analyses indicate evidence that no tropical storm existed). Changes to the number of tropical storms, hurricanes, major hurricanes, accumulated cyclone energy, and U.S. landfalling hurricanes are recommended for most years of the decade. Estimates of uncertainty in the reanalyzed database for the decade are also provided.


2007 ◽  
Vol 135 (12) ◽  
pp. 3927-3949 ◽  
Author(s):  
Ron McTaggart-Cowan ◽  
Lance F. Bosart ◽  
John R. Gyakum ◽  
Eyad H. Atallah

Abstract The landfall of Hurricane Katrina (2005) near New Orleans, Louisiana, on 29 August 2005 will be remembered as one of the worst natural disasters in the history of the United States. By comparison, the extratropical transition (ET) of the system as it accelerates poleward over the following days is innocuous and the system weakens until its eventual demise off the coast of Greenland. The extent of Katrina’s perturbation of the midlatitude flow would appear to be limited given the lack of reintensification or downstream development during ET. However, the slow progression of a strong upper-tropospheric warm pool across the North Atlantic Ocean in the week following Katrina’s landfall prompts the question of whether even a nonreintensifying ET event can lead to significant modification of the midlatitude flow. Analysis of Hurricane Katrina’s outflow layer after landfall suggests that it does not itself make up the long-lived midlatitude warm pool. However, the interaction between Katrina’s anticyclonic outflow and an approaching baroclinic trough is shown to establish an anomalous southwesterly conduit or “freeway” that injects a preexisting tropospheric warm pool over the southwestern United States into the midlatitudes. This warm pool reduces predictability in medium-range forecasts over the North Atlantic and Europe while simultaneously aiding in the development of Hurricanes Maria and Nate. The origin of the warm pool is shown to be the combination of anticyclonic upper-level features generated by eastern Pacific Hurricane Hilary and the south Asian anticyclone (SAA). The hemispheric nature of the connections involved with the development of the warm pool and its injection into the extratropics has an impact on forecasting, since the predictability issue associated with ET in this case involves far more than the potential reintensification of the transitioning system itself.


2014 ◽  
Vol 27 (23) ◽  
pp. 8674-8685 ◽  
Author(s):  
Michael Chenoweth

Abstract A comprehensive new compilation of North Atlantic tropical cyclone activity for the years 1851–98 is presented and compared with the second-generation North Atlantic hurricane database (HURDAT2) for the same years. This new analysis is based on the retrieval of 9072 newspaper marine shipping news reports, 1260 original logbook records, 271 Maury abstract logs, 147 U.S. marine meteorological journals, and 34 Met Office (UKMO) logbooks. Records from throughout North America and the Caribbean region were used along with other primary and secondary references holding unique land and marine data. For the first time, North Atlantic daily weather maps for 1864/65, 1873, and 1881–98 were used in historical tropical cyclone research. Results for the years 1851–98 include the omission of 62 of the 361 HURDAT2 storms, and the further reduction resulting from the merging of storms to a total of 288 unique HURDAT2 tropical cyclones. The new compilation gave a total of 497 tropical cyclones in the 48-yr record, or an average of 10.4 storms per year compared to 6.0 per year in HURDAT2 less the author’s omissions. Of this total, 209 storms are completely new. A total of 90 hurricanes made landfall in the United States during this time. Seven new U.S. landfalling hurricanes are present in the new dataset but not in HURDAT2. Eight U.S. landfalling hurricanes in HURDAT2 are now considered to have only tropical storm impact or were actually extratropical at landfall. Across the North Atlantic, the number of category-4 hurricanes based on the Saffir–Simpson hurricane wind scale, compared with HURDAT2, increased from 11 to 25, 6 of which made U.S. landfall at category-4 level.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Robert E. Hodges ◽  
James B. Elsner

The authors define the spatial response of hurricanes to extremes in the solar cycle. Using an equal-area hexagon tessellation, regional hurricane counts are examined during the period 1851–2010. The response features fewer hurricanes across the Caribbean, Gulf of Mexico, and along the eastern seaboard of the United States when sunspots are numerous. In contrast fewer hurricanes are observed in the central North Atlantic when sunspots are few. The sun-hurricane connection is as important as the El Niño Southern Oscillation toward statistically explaining regional hurricane occurrences.


2013 ◽  
Vol 26 (22) ◽  
pp. 8995-9005 ◽  
Author(s):  
Ruifang Wang ◽  
Liguang Wu

Abstract Whereas some studies linked the enhanced tropical cyclone (TC) formation in the North Atlantic basin to the ongoing global warming, other studies attributed it to the warm phase of the Atlantic multidecadal oscillation (AMO). Using the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) Twentieth Century Reanalysis (20CR) dataset, the present study reveals the distinctive spatial patterns associated with the influences of the AMO and global warming on TC formation in the North Atlantic basin. Two leading empirical orthogonal function (EOF) patterns are identified in the climate change of TC formation on time scales longer than interannual. The first pattern is associated with the AMO and its spatial pattern shows the basin-scale enhancement of TC formation during the AMO positive phase. The second pattern is associated with global warming, showing enhanced TC formation in the east tropical Atlantic (5°–20°N, 15°–40°W) and reduced TC formation from the southeast coast of the United States extending southward to the Caribbean Sea. In the warm AMO phase, the basinwide decrease in vertical wind shear and increases in midlevel relative humidity and maximum potential intensity (MPI) favor the basinwide enhancement of TC formation. Global warming suppresses TC formation from the southeast coast of the United States extending southward to the Caribbean Sea through enhancing vertical wind shear and reducing midlevel relative humidity and MPI. The enhanced TC formation in the east tropical Atlantic is due mainly to a local increase in MPI or sea surface temperature (SST), leading to a close relationship between the Atlantic SST and TC activity over the past decades.


2021 ◽  
Vol 9 ◽  
Author(s):  
Frank S. Gilliam

Tropical storms and hurricanes (collectively hereafter, tropical cyclones) are among the most destructive forces in nature. These threats are of particular concern to human populations and ecosystems of coastal areas of the southeastern United States, most especially in the State of Florida. This review begins with an overview of the effects of tropical cyclones on Florida’s most conspicuous terrestrial ecosystem—longleaf pine. Environmental factors leading to tropical cyclogenesis will also be reviewed, with a specific focus on (1) landfall history in Florida, and (2) the potential relationship between climate change and the frequency/intensity of tropical cyclones in the North Atlantic Ocean. Given its geographical distribution, it is not surprising that longleaf pine has long been impacted by tropical cyclones of the North Atlantic. Tropical cyclones are formed from a complex combination of meteorological conditions, driven initially by the release of excess heat from the surface waters of the ocean, along with an unstable atmosphere comprising air temperatures decreasing and wind speeds increasing with altitude. Among the coastal counties from Texas to Maine, those of Florida have experienced by far the highest frequency of tropical cyclones, especially the southern tip of peninsular Florida, with its most populous county (Miami-Dade) receiving 25 hits from 1900 to 2010, second only to Monroe County (32 hits) during that period. Frequencies of all categories of cyclones have increased significantly from 1850 to the present. Cyclone frequencies were significantly correlated with increases in air and ocean temperatures, both of which have increased over the past, suggesting a causal relationship with anthropogenic climate change. Of future concern is how increases in frequencies and intensities of tropical cyclones will negatively affect the structure and function of these ecologically and economically important longleaf pine ecosystems.


Sign in / Sign up

Export Citation Format

Share Document