The Spatial Pattern of the Sun-Hurricane Connection across the North Atlantic

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Robert E. Hodges ◽  
James B. Elsner

The authors define the spatial response of hurricanes to extremes in the solar cycle. Using an equal-area hexagon tessellation, regional hurricane counts are examined during the period 1851–2010. The response features fewer hurricanes across the Caribbean, Gulf of Mexico, and along the eastern seaboard of the United States when sunspots are numerous. In contrast fewer hurricanes are observed in the central North Atlantic when sunspots are few. The sun-hurricane connection is as important as the El Niño Southern Oscillation toward statistically explaining regional hurricane occurrences.

2013 ◽  
Vol 26 (22) ◽  
pp. 8995-9005 ◽  
Author(s):  
Ruifang Wang ◽  
Liguang Wu

Abstract Whereas some studies linked the enhanced tropical cyclone (TC) formation in the North Atlantic basin to the ongoing global warming, other studies attributed it to the warm phase of the Atlantic multidecadal oscillation (AMO). Using the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) Twentieth Century Reanalysis (20CR) dataset, the present study reveals the distinctive spatial patterns associated with the influences of the AMO and global warming on TC formation in the North Atlantic basin. Two leading empirical orthogonal function (EOF) patterns are identified in the climate change of TC formation on time scales longer than interannual. The first pattern is associated with the AMO and its spatial pattern shows the basin-scale enhancement of TC formation during the AMO positive phase. The second pattern is associated with global warming, showing enhanced TC formation in the east tropical Atlantic (5°–20°N, 15°–40°W) and reduced TC formation from the southeast coast of the United States extending southward to the Caribbean Sea. In the warm AMO phase, the basinwide decrease in vertical wind shear and increases in midlevel relative humidity and maximum potential intensity (MPI) favor the basinwide enhancement of TC formation. Global warming suppresses TC formation from the southeast coast of the United States extending southward to the Caribbean Sea through enhancing vertical wind shear and reducing midlevel relative humidity and MPI. The enhanced TC formation in the east tropical Atlantic is due mainly to a local increase in MPI or sea surface temperature (SST), leading to a close relationship between the Atlantic SST and TC activity over the past decades.


2020 ◽  
Vol 177 (10) ◽  
pp. 4983-5005 ◽  
Author(s):  
Indrani Roy

Abstract The role of natural factors, mainly solar 11-year cyclic variability and volcanic eruptions on two major modes of climate variability the North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO) are studied for about the last 150 years period. The NAO is the primary factor to regulate Central England Temperature (CET) during winter throughout the period, though NAO is impacted differently by other factors in various time periods. Solar variability during 1978–1997 indicates a strong positive in-phase connection with NAO, which is different in the period prior to that. Such connections were further explored by known existing mechanisms. Solar NAO lagged relationship is also shown not unequivocally maintained but sensitive to the chosen times of reference. It thus points towards the previously known mechanism/relationship related to the Sun and NAO. This study discussed the important roles played by ENSO on global temperature; while ENSO is influenced strongly by solar variability and volcanic eruptions in certain periods. A strong negative association between the Sun and ENSO is observed before the 1950s, which is positive though statistically insignificant during the second half of the twentieth century. The period 1978–1997, when two strong eruptions coincided with active years of strong solar cycles, the ENSO and volcano suggested a stronger association. That period showed warming in the central tropical Pacific while cooling in the North Atlantic with reference to various other anomaly periods. It indicates that the mean atmospheric state is important for understanding the connection between solar variability, the NAO and ENSO and associated mechanisms. It presents critical analyses to improve knowledge about major modes of variability and their roles in climate and reconciles various contradictory findings. It discusses the importance of detecting solar signal which needs to be robust too.


Author(s):  
Indrani Roy

The role of natural factors mainly solar eleven-year cycle variability, and volcanic eruptions on two major modes of climate variability the North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO) are studied for around last 150 years period. The NAO is the primary factor to regulate Central England Temperature (CET) during winter throughout the period, though NAO is impacted differently by other factors in various time periods. Solar variability indicates a strong positive influence on NAO during 1978-1997, though suggests opposite in earlier period. Solar NAO lag relationship is also shown sensitive to the chosen times of reference and thus points towards the previously proposed mechanism/ relationship related to the sun and NAO. The ENSO is influenced strongly by solar variability and volcanic eruptions in certain periods. This study observes a strong negative association between the sun and ENSO before the 1950s, which is even opposite during the second half of 20th century. The period 1978-1997, when two strong eruptions coincided with active years of strong solar cycles, the ENSO, and volcano suggested a stronger association, and we discussed the important role played by ENSO. That period showed warming in central tropical Pacific while cooling in the North Atlantic with reference to the later period (1999-2017) and also from chosen earlier period. Here we show that the mean atmospheric state is important for understanding the connection between solar variability, the NAO and ENSO and associated mechanism. It presents a critical analysis to improve knowledge about major modes of variability and their role in climate. We also discussed the importance of detecting the robust signal of natural variability, mainly the sun.


2008 ◽  
Vol 21 (10) ◽  
pp. 2138-2168 ◽  
Author(s):  
Christopher W. Landsea ◽  
David A. Glenn ◽  
William Bredemeyer ◽  
Michael Chenoweth ◽  
Ryan Ellis ◽  
...  

Abstract A reanalysis of the Atlantic basin tropical storm and hurricane database (“best track”) for the period of 1911–20 has been completed. This reassessment of the main archive for tropical cyclones of the North Atlantic Ocean, Caribbean Sea, and Gulf of Mexico was necessary to correct systematic biases and random errors in the data as well as to search for previously unrecognized systems. A methodology for the reanalysis process for revising the track and intensity of tropical cyclone data is provided in detail. The dataset now includes several new tropical cyclones, excludes one system previously considered a tropical storm, makes generally large alterations in the intensity estimates of most tropical cyclones (both toward stronger and weaker intensities), and typically adjusts existing tracks with minor corrections. Average errors in intensity and track values are estimated for both open ocean conditions as well as for landfalling systems. Finally, highlights are given for changes to the more significant hurricanes to impact the United States, Central America, and the Caribbean for this decade.


1951 ◽  
Vol 5 (4) ◽  
pp. 825-832

With the development of certain administrative frictions (concerning coal quotas, occupation costs, and the scrap metal treaty) between the western occupying powers and the German Federal Republic, early indications were that if the talk of “contractual agreements” did materialize it would reserve, for the occupying powers, wide controls over important areas of west Germany's internal and external affairs. In Washington, however, a general modification of approach was noted during the September discussions between the United States Secretary of State (Acheson), the United Kingdom Foreign Secretary (Morrison), and the French Foreign Minister (Schuman), preparatory to the Ottawa meetings of the North Atlantic Council.


1963 ◽  
Vol 17 (3) ◽  
pp. 709-732 ◽  
Author(s):  
Robert R. Bowie

The debate over strategy, forces, and nuclear control, which now divides the North Atlantic Treaty Organization (NATO), is framed largely in military terms: what is the best way to protect the NATO area and its members from aggression? The military aspects are complex in themselves, but the import of these issues extends far beyond defense. Their handling will greatly affect prospects for a partnership between the United States and a strong, united Europe


1992 ◽  
Vol 46 (3) ◽  
pp. 633-680 ◽  
Author(s):  
Steve Weber

At the end of the 1940s, the United States and several West European states allied to defend themselves against invasion by the Soviet Union. Balance-ofpower theory predicts the recurrent formation of such balances among states. But it says little about the precise nature of the balance, the principles on which it will be constructed, or its institutional manifestations. The North Atlantic Treaty Organization (NATO) has been a peculiar mix. As a formal institution, NATO has through most of its history been distinctly nonmultilateral, with the United States commanding most decision-making power and responsibility. At the same time, NATO provided security to its member states in a way that strongly reflected multilateral principles. Within NATO, security was indivisible. It was based on a general organizing principle, the principle that the external boundaries of alliance territory were completely inviolable and that an attack on any border was an attack on all. Diffuse reciprocity was the norm. In the terms set out by John Ruggie, NATO has generally scored low as a multilateral organization but high as an institution of multilateralism.


Author(s):  
Lars U. Scholl ◽  
Lars U. Scholl ◽  
Lars U. Scholl

This essay analyses the North Atlantic Cotton Trade through records of cotton arrivals at Liverpool, using two sets of data from 1830-1832 and 1853-1855. Using Customs Bills of Entry, Williams presents data of cotton receipts from the United States to Liverpool; quantities of bales exported; numbers of vessels; origin ports of vessels; distinguishes between regular and occasional cotton traders; arrivals at Liverpool by nationality; and vessel tonnage. He determines that the majority of vessels participated in the cotton trade seasonally, and suggests that the cotton trade was not self-contained, but part of a complex interrelationship within the North Atlantic trade system, encompassing commodity dealings, shipping employment levels, and the seasonal characteristics of cargo. The conclusion requests further scholarly research into the pattern of ship movements in the Atlantic. Two appendices provide more data, concerning arrival dates of regular traders in Liverpool, and the month of departure of cotton vessels from Southern states.


2020 ◽  
Vol 33 (1) ◽  
pp. 201-212
Author(s):  
G. Wolf ◽  
A. Czaja ◽  
D. J. Brayshaw ◽  
N. P. Klingaman

AbstractLarge-scale, quasi-stationary atmospheric waves (QSWs) are known to be strongly connected with extreme events and general weather conditions. Yet, despite their importance, there is still a lack of understanding about what drives variability in QSW. This study is a step toward this goal, and it identifies three statistically significant connections between QSWs and sea surface anomalies (temperature and ice cover) by applying a maximum covariance analysis technique to reanalysis data (1979–2015). The two most dominant connections are linked to El Niño–Southern Oscillation and the North Atlantic Oscillation. They confirm the expected relationship between QSWs and anomalous surface conditions in the tropical Pacific and the North Atlantic, but they cannot be used to infer a driving mechanism or predictability from the sea surface temperature or the sea ice cover to the QSW. The third connection, in contrast, occurs between late winter to early spring Atlantic sea ice concentrations and anomalous QSW patterns in the following late summer to early autumn. This new finding offers a pathway for possible long-term predictability of late summer QSW occurrence.


Sign in / Sign up

Export Citation Format

Share Document