Hemispherical Asymmetry of Tropical Precipitation in ECHAM5/MPI-OM during El Niño and under Global Warming

2008 ◽  
Vol 21 (6) ◽  
pp. 1309-1332 ◽  
Author(s):  
Chia Chou ◽  
Jien-Yi Tu

Abstract Similarities and differences between El Niño and global warming are examined in hemispherical and zonal tropical precipitation changes of the ECHAM5/Max Planck Institute Ocean Model (MPI-OM) simulations. Similarities include hemispherical asymmetry of tropical precipitation changes. This precipitation asymmetry varies with season. In the boreal summer and autumn (winter and spring), positive precipitation anomalies are found over the Northern (Southern) Hemisphere and negative precipitation anomalies are found over the Southern (Northern) Hemisphere. This precipitation asymmetry in both the El Niño and global warming cases is associated with the seasonal migration of the Hadley circulation; however, their causes are different. In El Niño, a meridional moisture gradient between convective and subsidence regions is the fundamental basis for inducing the asymmetry. Over the ascending branch of the Hadley circulation, convection is enhanced by less effective static stability. Over the margins of the ascending branch, convection is suppressed by the import of dry air from the descending branch. In global warming, low-level moisture is enhanced significantly due to warmer tropospheric temperatures. This enhances vertical moisture transport over the ascending branch of the Hadley circulation, so convection is strengthened. Over the descending branch, the mean Hadley circulation tends to transport relatively drier air downward, so convection is reduced.

2007 ◽  
Vol 20 (14) ◽  
pp. 3411-3433 ◽  
Author(s):  
Chia Chou ◽  
Min-Hui Lo

Abstract In response to the zonally symmetric El Niño–Southern Oscillation forcing, hemispherically asymmetric tropical precipitation anomalies associated with the Hadley circulation are found. In boreal spring after an El Niño peak phase, positive tropical precipitation anomalies occur in the Southern Hemisphere, while negative precipitation anomalies are found in the Northern Hemisphere. This zonal asymmetry is more apparent in the El Niño decaying phase than in the El Niño growing phase. The maximum amplitude of this zonal asymmetry lags one season behind the maximum SST anomalies over the tropical eastern Pacific. This lagged response of the asymmetry is mainly because of the tropical precipitation outside the tropical eastern Pacific, which is associated with the SST and tropospheric temperature anomalies outside the tropical eastern Pacific. A combination of the effect associated with the anomalous gross moist stability and the effect of the horizontal moist static energy (MSE) transport is responsible for the asymmetry. The above effects are associated with the seasonal migration of the Hadley circulation. Warm SST and tropospheric temperature anomalies increase the low-level moisture in the Tropics. In the effect associated with anomalous gross moist stability, the tropical precipitation over the ascending branch of the Hadley circulation is enhanced because of the decrease of effective moist stability, which is induced by the increase of low-level moisture. This enhancement associated with the Hadley circulation reduces the low-level moisture over the descending branch and creates a meridional moisture gradient. In the effect of the horizontal MSE transport, the tropical precipitation anomalies over margins of the ascending branch is reduced by dry advection from the descending branch, which is associated with mean Hadley circulation.


2020 ◽  
Vol 6 (2) ◽  
pp. eaax4177 ◽  
Author(s):  
Zixiang Yan ◽  
Bo Wu ◽  
Tim Li ◽  
Mat Collins ◽  
Robin Clark ◽  
...  

During El Niño events, increased precipitation occurs over the equatorial central eastern Pacific, corresponding to enhanced convective heating that modulates global climate by exciting atmospheric teleconnections. These precipitation anomalies are projected to shift and extend eastward in response to global warming. We show that this predicted change is caused by narrowing of the meridional span of the underlying El Niño–related sea surface temperature (SST) anomalies that leads to intensification of the meridional gradient of the SST anomalies, strengthening boundary-layer moisture convergence over the equatorial eastern Pacific, and enhancing local positive precipitation anomalies. The eastward shift and extension of these anomalies also intensify and extend eastward negative precipitation anomalies over the tropical western North Pacific, by strengthening equatorward advection of low mean moist enthalpy. Changes in El Niño–induced tropical precipitation anomalies suggest that, under global warming, El Niño events decay faster after their peak phase, thus shortening their duration.


2014 ◽  
Vol 27 (7) ◽  
pp. 2622-2642 ◽  
Author(s):  
Yong Sun ◽  
Tianjun Zhou

Abstract Analyses of 30-yr four reanalysis datasets [NCEP–NCAR reanalysis (NCEP1), NCEP–Department of Energy reanalysis (NCEP2), Japanese 25-year Reanalysis Project (JRA-25), and Interim ECMWF Re-Analysis (ERA-Interim)] reveal remarkably interannual variability of the Hadley circulation (HC) in boreal summer (June–August). The two leading modes of interannual variability of boreal summer HC are obtained by performing empirical orthogonal function (EOF) analysis on the mass streamfunction. A general intensification of boreal summer HC is seen in EOF-1 mode among NCEP1, NCEP2, and JRA-25 but the corresponding EOF-2 mode in ERA-Interim, while a weakened northern Hadley cell and remarkable regional variation of a southern Hadley cell are captured by the EOF-2 mode (from NCEP1, NCEP2, and JRA-25) and EOF-1 mode (from ERA-Interim), as evidenced by the enhanced (decreased) southern Hadley cell in the southern tropics (the northern tropics and southern subtropics). Both modes are driven by El Niño–like SST forcing in boreal summer, but are relevant to different phases of El Niño events. The EOF-1 (or EOF-2 derived from ERA-Interim) [EOF-2 (or EOF-1 derived from ERA-Interim)] mode is driven by SST anomalies in developing (decaying) El Niño summers. The interannual variations of the northern Hadley cell in both modes are driven by El Niño through modulating the interannual variations of the East Asian summer monsoon, while anomalous local Hadley circulation (LHC) in the regions 30°S–20°N, 110°E–180° and 30°S–20°N, 160°E–120°W in response to El Niño forcing largely determine the interannual variations of southern Hadley cell in both modes, respectively. The different behaviors of the southern Hadley cell between two leading modes can be well explained by the southward shift of the tropical heating center from north of 10°N in developing El Niño summers to south of 10°N in decaying El Niño summers.


2008 ◽  
Vol 21 (21) ◽  
pp. 5585-5602 ◽  
Author(s):  
Pei-Hua Tan ◽  
Chia Chou ◽  
Jien-Yi Tu

Abstract Hemispherically and temporally asymmetric tropical precipitation responses to global warming are evaluated in 13 different coupled atmosphere–ocean climate model simulations. In the late boreal summer, hemispherical averages of the tropical precipitation anomalies from the multimodel ensemble show a strong positive trend in the Northern Hemisphere and a weak negative trend in the Southern Hemisphere. In the late austral summer, on the other hand, the trends are reversed. This implies that the summer hemisphere becomes wetter and the winter hemisphere becomes a little drier in the tropics. Thus, the seasonal range of tropical precipitation, differences between wet and dry seasons, is increased. Zonal averages of the precipitation anomalies from the multimodel ensemble also reveal a meridional movement, which basically follows the seasonal migration of the main convection zone. Similar asymmetric features can be found in all 13 climate model simulations used in this study. Based on the moisture budget analysis, the vertical moisture advection associated with mean circulation is the main contribution for the robustness of the asymmetric distribution of the tropical precipitation anomalies. Under global warming, tropospheric water vapor increases as the temperature rises and most enhanced water vapor is in the lower troposphere. The ascending motion of the Hadley circulation then transports more water vapor upward, that is, anomalous moisture convergence, and enhances precipitation over the main convection zones. On the other hand, the thermodynamic effect associated with the descending motion of the Hadley circulation, that is, anomalous moisture divergence, reduces the precipitation over the descending regions.


2016 ◽  
Vol 31 (4) ◽  
pp. 956-967 ◽  
Author(s):  
Ricardo Sánchez-Murillo ◽  
Ana M. Durán-Quesada ◽  
Christian Birkel ◽  
Germain Esquivel-Hernández ◽  
Jan Boll

2019 ◽  
Vol 19 (23) ◽  
pp. 14741-14754
Author(s):  
Roger J. Francey ◽  
Jorgen S. Frederiksen ◽  
L. Paul Steele ◽  
Ray L. Langenfelds

Abstract. Spatial differences in the monthly baseline CO2 since 1992 from Mauna Loa (mlo, 19.5∘ N, 155.6∘ W, 3379 m), Cape Grim (cgo, 40.7∘ S, 144.7∘ E, 94 m), and South Pole (spo, 90∘ S, 2810 m) are examined for consistency between four monitoring networks. For each site pair, a composite based on the average of NOAA, CSIRO, and two independent Scripps Institution of Oceanography (SIO) analysis methods is presented. Averages of the monthly standard deviations are 0.25, 0.23, and 0.16 ppm for mlo–cgo, mlo–spo, and cgo–spo respectively. This high degree of consistency and near-monthly temporal differentiation (compared to CO2 growth rates) provide an opportunity to use the composite differences for verification of global carbon cycle model simulations. Interhemispheric CO2 variation is predominantly imparted by the mlo data. The peaks and dips of the seasonal variation in interhemispheric difference act largely independently. The peaks mainly occur in May, near the peak of Northern Hemisphere (NH) terrestrial photosynthesis/respiration cycle. February–April is when interhemispheric exchange via eddy processes dominates, with increasing contributions from mean transport via the Hadley circulation into boreal summer (May–July). The dips occur in September, when the CO2 partial pressure difference is near zero. The cross-equatorial flux variation is large and sufficient to significantly influence short-term Northern Hemisphere growth rate variations. However, surface–air terrestrial flux anomalies would need to be up to an order of magnitude larger than found to explain the peak and dip CO2 difference variations. Features throughout the composite CO2 difference records are inconsistent in timing and amplitude with air–surface fluxes but are largely consistent with interhemispheric transport variations. These include greater variability prior to 2010 compared to the remarkable stability in annual CO2 interhemispheric difference in the 5-year relatively El Niño-quiet period 2010–2014 (despite a strong La Niña in 2011), and the 2017 recovery in the CO2 interhemispheric gradient from the unprecedented El Niño event in 2015–2016.


Nature ◽  
2021 ◽  
Vol 591 (7849) ◽  
pp. E14-E15
Author(s):  
Wenju Cai ◽  
Benjamin Ng ◽  
Tao Geng ◽  
Lixin Wu ◽  
Agus Santoso ◽  
...  

2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


2009 ◽  
Vol 22 (23) ◽  
pp. 6404-6412 ◽  
Author(s):  
A. E. Dessler ◽  
S. Wong

Abstract The strength of the water vapor feedback has been estimated by analyzing the changes in tropospheric specific humidity during El Niño–Southern Oscillation (ENSO) cycles. This analysis is done in climate models driven by observed sea surface temperatures [Atmospheric Model Intercomparison Project (AMIP) runs], preindustrial runs of fully coupled climate models, and in two reanalysis products, the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) and the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA). The water vapor feedback during ENSO-driven climate variations in the AMIP models ranges from 1.9 to 3.7 W m−2 K−1, in the control runs it ranges from 1.4 to 3.9 W m−2 K−1, and in the ERA-40 and MERRA it is 3.7 and 4.7 W m−2 K−1, respectively. Taken as a group, these values are higher than previous estimates of the water vapor feedback in response to century-long global warming. Also examined is the reason for the large spread in the ENSO-driven water vapor feedback among the models and between the models and the reanalyses. The models and the reanalyses show a consistent relationship between the variations in the tropical surface temperature over an ENSO cycle and the radiative response to the associated changes in specific humidity. However, the feedback is defined as the ratio of the radiative response to the change in the global average temperature. Differences in extratropical temperatures will, therefore, lead to different inferred feedbacks, and this is the root cause of spread in feedbacks observed here. This is also the likely reason that the feedback inferred from ENSO is larger than for long-term global warming.


Sign in / Sign up

Export Citation Format

Share Document