scholarly journals Asymmetric Responses of Tropical Precipitation during ENSO

2007 ◽  
Vol 20 (14) ◽  
pp. 3411-3433 ◽  
Author(s):  
Chia Chou ◽  
Min-Hui Lo

Abstract In response to the zonally symmetric El Niño–Southern Oscillation forcing, hemispherically asymmetric tropical precipitation anomalies associated with the Hadley circulation are found. In boreal spring after an El Niño peak phase, positive tropical precipitation anomalies occur in the Southern Hemisphere, while negative precipitation anomalies are found in the Northern Hemisphere. This zonal asymmetry is more apparent in the El Niño decaying phase than in the El Niño growing phase. The maximum amplitude of this zonal asymmetry lags one season behind the maximum SST anomalies over the tropical eastern Pacific. This lagged response of the asymmetry is mainly because of the tropical precipitation outside the tropical eastern Pacific, which is associated with the SST and tropospheric temperature anomalies outside the tropical eastern Pacific. A combination of the effect associated with the anomalous gross moist stability and the effect of the horizontal moist static energy (MSE) transport is responsible for the asymmetry. The above effects are associated with the seasonal migration of the Hadley circulation. Warm SST and tropospheric temperature anomalies increase the low-level moisture in the Tropics. In the effect associated with anomalous gross moist stability, the tropical precipitation over the ascending branch of the Hadley circulation is enhanced because of the decrease of effective moist stability, which is induced by the increase of low-level moisture. This enhancement associated with the Hadley circulation reduces the low-level moisture over the descending branch and creates a meridional moisture gradient. In the effect of the horizontal MSE transport, the tropical precipitation anomalies over margins of the ascending branch is reduced by dry advection from the descending branch, which is associated with mean Hadley circulation.

2008 ◽  
Vol 21 (6) ◽  
pp. 1309-1332 ◽  
Author(s):  
Chia Chou ◽  
Jien-Yi Tu

Abstract Similarities and differences between El Niño and global warming are examined in hemispherical and zonal tropical precipitation changes of the ECHAM5/Max Planck Institute Ocean Model (MPI-OM) simulations. Similarities include hemispherical asymmetry of tropical precipitation changes. This precipitation asymmetry varies with season. In the boreal summer and autumn (winter and spring), positive precipitation anomalies are found over the Northern (Southern) Hemisphere and negative precipitation anomalies are found over the Southern (Northern) Hemisphere. This precipitation asymmetry in both the El Niño and global warming cases is associated with the seasonal migration of the Hadley circulation; however, their causes are different. In El Niño, a meridional moisture gradient between convective and subsidence regions is the fundamental basis for inducing the asymmetry. Over the ascending branch of the Hadley circulation, convection is enhanced by less effective static stability. Over the margins of the ascending branch, convection is suppressed by the import of dry air from the descending branch. In global warming, low-level moisture is enhanced significantly due to warmer tropospheric temperatures. This enhances vertical moisture transport over the ascending branch of the Hadley circulation, so convection is strengthened. Over the descending branch, the mean Hadley circulation tends to transport relatively drier air downward, so convection is reduced.


2020 ◽  
Vol 6 (2) ◽  
pp. eaax4177 ◽  
Author(s):  
Zixiang Yan ◽  
Bo Wu ◽  
Tim Li ◽  
Mat Collins ◽  
Robin Clark ◽  
...  

During El Niño events, increased precipitation occurs over the equatorial central eastern Pacific, corresponding to enhanced convective heating that modulates global climate by exciting atmospheric teleconnections. These precipitation anomalies are projected to shift and extend eastward in response to global warming. We show that this predicted change is caused by narrowing of the meridional span of the underlying El Niño–related sea surface temperature (SST) anomalies that leads to intensification of the meridional gradient of the SST anomalies, strengthening boundary-layer moisture convergence over the equatorial eastern Pacific, and enhancing local positive precipitation anomalies. The eastward shift and extension of these anomalies also intensify and extend eastward negative precipitation anomalies over the tropical western North Pacific, by strengthening equatorward advection of low mean moist enthalpy. Changes in El Niño–induced tropical precipitation anomalies suggest that, under global warming, El Niño events decay faster after their peak phase, thus shortening their duration.


2002 ◽  
Vol 30 (1) ◽  
Author(s):  
Juan Antonio de Anda-Montañez ◽  
Susana Martínez-Aguilar ◽  
Alberto Amador-Buenrostro ◽  
Adriana Muhlia-Almazán

2005 ◽  
Vol 18 (18) ◽  
pp. 3928-3950 ◽  
Author(s):  
J. David Neelin ◽  
Hui Su

Abstract Teleconnections have traditionally been studied for the case of dry dynamical response to a given diabatic heat source. Important anomalies often occur within convective zones, for instance, in the observed remote response to El Niño. The reduction of rainfall and teleconnection propagation in deep convective regions poses theoretical challenges because feedbacks involving convective heating and cloud radiative effects come into play. Land surface feedbacks, including variations of land surface temperature, and ocean surface layer temperature response must be taken into account. During El Niño, descent and negative precipitation anomalies often extend across equatorial South America and the Atlantic intertropical convergence zone. Analysis of simulated mechanisms in a case study of the 1997/98 El Niño is used to illustrate the general principals of teleconnections occurring in deep convective zones, contrasting land and ocean regions. Comparison to other simulated events shows similar behavior. Tropospheric temperature and wind anomalies are spread eastward by wave dynamics modified by interaction with the moist convection zones. The traditional picture would have gradual descent balanced by radiative damping, but this scenario misses the most important balances in the moist static energy (MSE) budget. A small “zoo” of mechanisms is active in producing strong regional descent anomalies and associated drought. Factors common to several mechanisms include the role of convective quasi equilibrium (QE) in linking low-level moisture anomalies to free tropospheric temperature anomalies in a two-way interaction referred to as QE mediation. Convective heating feedbacks change the net static stability to a gross moist stability (GMS) M. The large cloud radiative feedback terms may be manipulated to appear as a modified static stability Meff, under approximations that are quantified for the quasi-equilibrium tropical circulation model used here. The relevant measure of Meff differs between land, where surface energy flux balance applies, and short time scales over ocean. For the time scale of an onsetting El Niño, a mixed layer ocean response is similar to a fixed sea surface temperature (SST) case, with surface fluxes lost into the ocean and Meff substantially reduced over ocean-enhancing descent anomalies. Use of Meff aids analysis of terms that act as the initiators of descent anomalies. Apparently modest terms in the MSE budget can be acted on by the GMS multiplier effect, which yields substantial precipitation anomalies due to the large ratio of the moisture convergence to the MSE divergence. Advection terms enter in several mechanisms, with the leading effects here due to advection by mean winds in both MSE and momentum balances. A Kelvinoid solution is presented as a prototype for how easterly flow enhances moist wave decay mechanisms, permitting relatively small damping terms by surface drag and radiative damping to produce the substantial eastward temperature gradients seen in observations and simulations and contributing to precipitation anomalies. The leading mechanism for drought in eastern equatorial South America is the upped-ante mechanism in which QE mediation of teleconnected tropospheric temperature anomalies tends to produce moisture gradients between the convection zone, where low-level moisture increases toward QE, and the neighboring nonconvective region. Over the Atlantic ITCZ, the upped-ante mechanism is a substantial contributor, but on short time scales several mechanisms referred to jointly as troposphere/SST disequilibrium mechanisms are important. While SST is adjusting during passive SST (coupled ocean mixed layer) experiments, or for fixed SST, heat flux to the ocean is lost to the atmosphere, and these mechanisms can induce descent and precipitation anomalies, although they disappear when SST equilibrates. In simulations here, cloud radiative feedbacks, surface heat fluxes induced by teleconnected wind anomalies, and surface fluxes induced by QE-mediated temperature anomalies are significant disequilibrium contributors. At time scales of several months or longer, remaining Atlantic ITCZ rainfall reductions are maintained by the upped-ante mechanism.


2003 ◽  
Vol 16 (9) ◽  
pp. 1283-1301 ◽  
Author(s):  
Hui Su ◽  
J. David Neelin ◽  
Joyce E. Meyerson

Abstract During El Niño, there are substantial tropospheric temperature anomalies across the entire tropical belt associated with the warming of sea surface temperatures (SSTs) in the central and eastern Pacific. The quasi-equilibrium tropical circulation model (QTCM) is used to investigate the mechanisms for tropical tropospheric temperature response to SST forcing. In both observations and model simulations, the tropical averaged tropospheric temperature anomaly 〈T̂′〉 is approximately linear with the tropical mean SST anomaly 〈T′s〉 for observed SST forcing. Regional SST anomaly experiments are used to estimate regional sensitivity measures and quantify the degree of nonlinearity. For instance, SST anomalies of 3°C in the central Pacific would give a nonlinear 〈T̂′〉 response about 15% greater than a linear fit to small SST anomaly experiments would predict, but for the maximum observed SST anomaly in this region the response differs by only 5% from linearity. Nonlinearity in 〈T̂′〉 response is modest even when local precipitation response is highly nonlinear. While temperature anomalies have large spatial scales, the main precipitation anomaly tends to be local to the SST anomaly regions. The tropical averaged precipitation anomalies 〈P′〉 do not necessarily have a simple relation to tropical averaged tropospheric temperature anomalies or SST forcing. The approximate linearity of the 〈T̂′〉 response is due to two factors: 1) the strong nonlinearities that occur locally tend to be associated with the transport terms, which become small in the large-area average; and 2) the dependence on temperature of the top-of-atmosphere and surface fluxes has only weak nonlinearity over the range of 〈T̂′〉 variations. Analytical approximations to the QTCM suggest that the direct impact of climatological SST, via flux terms, contributes modestly to regional variations in the sensitivity α of 〈T̂′〉 to 〈T′s〉. Wind speed has a fairly strong effect on α but tends to oppose the direct effect of SST since cold SST regions often have stronger climatological wind, which would yield larger slopes. A substantial contribution to regional variation in α comes from the different reaction of moisture to SST anomalies in precipitating and nonprecipitating regions. Although regions over climatologically warm water have a slightly higher sensitivity, subregions of El Niño SST anomalies even in the colder eastern Pacific contribute substantially to tropospheric temperature anomalies.


2017 ◽  
Vol 50 (5-6) ◽  
pp. 1625-1638 ◽  
Author(s):  
Yi-Kai Wu ◽  
Lin Chen ◽  
Chi-Cherng Hong ◽  
Tim Li ◽  
Cheng-Ta Chen ◽  
...  

2016 ◽  
Vol 31 (4) ◽  
pp. 956-967 ◽  
Author(s):  
Ricardo Sánchez-Murillo ◽  
Ana M. Durán-Quesada ◽  
Christian Birkel ◽  
Germain Esquivel-Hernández ◽  
Jan Boll

2020 ◽  
Vol 33 (3) ◽  
pp. 825-846
Author(s):  
Wei Tan ◽  
Zexun Wei ◽  
Qiang Liu ◽  
Qingjun Fu ◽  
Mengyan Chen ◽  
...  

ABSTRACTThis study focuses on different evolutions of the low-level atmospheric circulations between eastern Pacific (EP) El Niño and central Pacific-II (CP-II) El Niño. The western North Pacific anomalous anticyclone (WNPAC) originates from the northern South China Sea for EP El Niño, and moves to the western North Pacific (WNP) afterward. Compared with EP El Niño, the origin of the WNPAC is farther west during CP-II El Niño, with the center over the Indochina Peninsula. Moreover, the WNPAC shows a weaker eastward shift. Such discrepancies are attributed to different evolutions of the cyclonic response over the WNP, which can suppress the convection in the western flank of the anomalous cyclone. The eastward retreat of the anomalous cyclone is significant for EP El Niño, but less evident for CP-II El Niño. These discrepancies are related to zonal evolutions of the increased precipitation over the equatorial Pacific. Following the southward migration of the intertropical convergence zone (ITCZ), the deep-convection region extends eastward along the equator, reinforcing the atmospheric response to the eastern Pacific warming in EP El Niño. For CP-II El Niño, the atmospheric response is insignificant over the eastern Pacific without warming. Moreover, the meridional migration of the ITCZ can modulate zonal variations of the easterly trade wind and specific humidity as well. Due to the combined effects of the climatological background and atmospheric anomalies, the specific humidity–induced and wind-induced moist enthalpy advection contribute to different shifts of the precipitation center.


2021 ◽  
pp. 103529
Author(s):  
Jean-Philippe Belliard ◽  
Luis Dominguez-Granda ◽  
John A. Ramos-Veliz ◽  
Andrea M. Rosado-Moncayo ◽  
Jorge Nath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document