scholarly journals How Does El Niño Affect the Interannual Variability of the Boreal Summer Hadley Circulation?

2014 ◽  
Vol 27 (7) ◽  
pp. 2622-2642 ◽  
Author(s):  
Yong Sun ◽  
Tianjun Zhou

Abstract Analyses of 30-yr four reanalysis datasets [NCEP–NCAR reanalysis (NCEP1), NCEP–Department of Energy reanalysis (NCEP2), Japanese 25-year Reanalysis Project (JRA-25), and Interim ECMWF Re-Analysis (ERA-Interim)] reveal remarkably interannual variability of the Hadley circulation (HC) in boreal summer (June–August). The two leading modes of interannual variability of boreal summer HC are obtained by performing empirical orthogonal function (EOF) analysis on the mass streamfunction. A general intensification of boreal summer HC is seen in EOF-1 mode among NCEP1, NCEP2, and JRA-25 but the corresponding EOF-2 mode in ERA-Interim, while a weakened northern Hadley cell and remarkable regional variation of a southern Hadley cell are captured by the EOF-2 mode (from NCEP1, NCEP2, and JRA-25) and EOF-1 mode (from ERA-Interim), as evidenced by the enhanced (decreased) southern Hadley cell in the southern tropics (the northern tropics and southern subtropics). Both modes are driven by El Niño–like SST forcing in boreal summer, but are relevant to different phases of El Niño events. The EOF-1 (or EOF-2 derived from ERA-Interim) [EOF-2 (or EOF-1 derived from ERA-Interim)] mode is driven by SST anomalies in developing (decaying) El Niño summers. The interannual variations of the northern Hadley cell in both modes are driven by El Niño through modulating the interannual variations of the East Asian summer monsoon, while anomalous local Hadley circulation (LHC) in the regions 30°S–20°N, 110°E–180° and 30°S–20°N, 160°E–120°W in response to El Niño forcing largely determine the interannual variations of southern Hadley cell in both modes, respectively. The different behaviors of the southern Hadley cell between two leading modes can be well explained by the southward shift of the tropical heating center from north of 10°N in developing El Niño summers to south of 10°N in decaying El Niño summers.

2018 ◽  
Vol 31 (18) ◽  
pp. 7441-7457 ◽  
Author(s):  
Bo Sun ◽  
Huijun Wang

This study analyzes the interannual and interdecadal variability of spring and summer precipitation over the Three River Source (TRS) region in China using four datasets. A general consistency is revealed among the four datasets with regard to the interannual and interdecadal variability of TRS precipitation during 1979–2015, demonstrating a confidence of the four datasets in representing the precipitation variability over the TRS region. The TRS spring and summer precipitation shows distinct interannual and interdecadal variability, with an overall increasing trend in the spring precipitation and an interdecadal oscillation in the summer precipitation. The regimes associated with the interannual variability of TRS spring and summer precipitation are further investigated. The interannual variability of TRS spring precipitation is essentially modulated by an anomalous easterly water vapor transport (WVT) branch associated with the leading mode of Eurasian spring circulation. El Niño–Southern Oscillation (ENSO) may affect the interannual variability of TRS spring precipitation by causing southerly WVT anomalies toward the TRS region. The interannual variability of TRS summer precipitation is essentially modulated by an anomalous southwesterly WVT branch over the TRS region, which is mainly associated with a Eurasian wave train connected with the summer North Atlantic Oscillation. A strong East Asian summer monsoon and an El Niño–decaying summer may also contribute to the southwesterly WVT anomalies over the TRS region.


2008 ◽  
Vol 21 (6) ◽  
pp. 1309-1332 ◽  
Author(s):  
Chia Chou ◽  
Jien-Yi Tu

Abstract Similarities and differences between El Niño and global warming are examined in hemispherical and zonal tropical precipitation changes of the ECHAM5/Max Planck Institute Ocean Model (MPI-OM) simulations. Similarities include hemispherical asymmetry of tropical precipitation changes. This precipitation asymmetry varies with season. In the boreal summer and autumn (winter and spring), positive precipitation anomalies are found over the Northern (Southern) Hemisphere and negative precipitation anomalies are found over the Southern (Northern) Hemisphere. This precipitation asymmetry in both the El Niño and global warming cases is associated with the seasonal migration of the Hadley circulation; however, their causes are different. In El Niño, a meridional moisture gradient between convective and subsidence regions is the fundamental basis for inducing the asymmetry. Over the ascending branch of the Hadley circulation, convection is enhanced by less effective static stability. Over the margins of the ascending branch, convection is suppressed by the import of dry air from the descending branch. In global warming, low-level moisture is enhanced significantly due to warmer tropospheric temperatures. This enhances vertical moisture transport over the ascending branch of the Hadley circulation, so convection is strengthened. Over the descending branch, the mean Hadley circulation tends to transport relatively drier air downward, so convection is reduced.


2019 ◽  
Vol 19 (23) ◽  
pp. 14741-14754
Author(s):  
Roger J. Francey ◽  
Jorgen S. Frederiksen ◽  
L. Paul Steele ◽  
Ray L. Langenfelds

Abstract. Spatial differences in the monthly baseline CO2 since 1992 from Mauna Loa (mlo, 19.5∘ N, 155.6∘ W, 3379 m), Cape Grim (cgo, 40.7∘ S, 144.7∘ E, 94 m), and South Pole (spo, 90∘ S, 2810 m) are examined for consistency between four monitoring networks. For each site pair, a composite based on the average of NOAA, CSIRO, and two independent Scripps Institution of Oceanography (SIO) analysis methods is presented. Averages of the monthly standard deviations are 0.25, 0.23, and 0.16 ppm for mlo–cgo, mlo–spo, and cgo–spo respectively. This high degree of consistency and near-monthly temporal differentiation (compared to CO2 growth rates) provide an opportunity to use the composite differences for verification of global carbon cycle model simulations. Interhemispheric CO2 variation is predominantly imparted by the mlo data. The peaks and dips of the seasonal variation in interhemispheric difference act largely independently. The peaks mainly occur in May, near the peak of Northern Hemisphere (NH) terrestrial photosynthesis/respiration cycle. February–April is when interhemispheric exchange via eddy processes dominates, with increasing contributions from mean transport via the Hadley circulation into boreal summer (May–July). The dips occur in September, when the CO2 partial pressure difference is near zero. The cross-equatorial flux variation is large and sufficient to significantly influence short-term Northern Hemisphere growth rate variations. However, surface–air terrestrial flux anomalies would need to be up to an order of magnitude larger than found to explain the peak and dip CO2 difference variations. Features throughout the composite CO2 difference records are inconsistent in timing and amplitude with air–surface fluxes but are largely consistent with interhemispheric transport variations. These include greater variability prior to 2010 compared to the remarkable stability in annual CO2 interhemispheric difference in the 5-year relatively El Niño-quiet period 2010–2014 (despite a strong La Niña in 2011), and the 2017 recovery in the CO2 interhemispheric gradient from the unprecedented El Niño event in 2015–2016.


2009 ◽  
Vol 22 (5) ◽  
pp. 1159-1173 ◽  
Author(s):  
Tianjun Zhou ◽  
Bo Wu ◽  
Bin Wang

Abstract The authors evaluate the performances of 11 AGCMs that participated in the Atmospheric Model Intercomparison Project II (AMIP II) and that were run in an AGCM-alone way forced by historical sea surface temperature covering the period 1979–99 and their multimodel ensemble (MME) simulation of the interannual variability of the Asian–Australian monsoon (AAM). The authors explore to what extent these models can reproduce two observed major modes of AAM rainfall for the period 1979–99, which account for about 38% of the total interannual variances. It is shown that the MME SST-forced simulation of the seasonal rainfall anomalies reproduces the first two leading modes of variability with a skill that is comparable to the NCEP/Department of Energy Global Reanalysis 2 (NCEP-2) in terms of the spatial patterns and the corresponding temporal variations as well as their relationships with ENSO evolution. Both the biennial tendency and low-frequency components of the two leading modes are captured reasonably in MME. The skill of AMIP simulation is seasonally dependent. December–February (DJF) [July–August (JJA)] has the highest (lowest) skill. Over the extratropical western North Pacific and South China Sea, where ocean–atmosphere coupling may be critical for modeling the monsoon rainfall, the MME fails to demonstrate any skill in JJA, while the reanalysis has higher skills. The MME has deficiencies in simulating the seasonal phase of two anticyclones associated with the first mode, which are not in phase with ENSO forcing in observations but strictly match that of Niño-3.4 SST in MME. While the success of MME in capturing essential features of the first mode suggests the dominance of remote El Niño forcing in producing the predictable portion of AAM rainfall variability, the deficiency in capturing the seasonal phase implies the importance of local air–sea coupling effects. The first mode generally concurs with the turnabout of El Niño; meanwhile, the second mode is driven by La Niña at decaying stage. Multimodel intercomparison shows that there are good relationships between the simulated climatology and anomaly in terms of the degree of accuracy.


2017 ◽  
Vol 30 (15) ◽  
pp. 5605-5619 ◽  
Author(s):  
Youichi Kamae ◽  
Wei Mei ◽  
Shang-Ping Xie ◽  
Moeka Naoi ◽  
Hiroaki Ueda

Atmospheric rivers (ARs), conduits of intense water vapor transport in the midlatitudes, are critically important for water resources and heavy rainfall events over the west coast of North America, Europe, and Africa. ARs are also frequently observed over the northwestern Pacific (NWP) during boreal summer but have not been studied comprehensively. Here the climatology, seasonal variation, interannual variability, and predictability of NWP ARs (NWPARs) are examined by using a large ensemble, high-resolution atmospheric general circulation model (AGCM) simulation and a global atmospheric reanalysis. The AGCM captures general characteristics of climatology and variability compared to the reanalysis, suggesting a strong sea surface temperature (SST) effect on NWPARs. The summertime NWPAR occurrences are tightly related to El Niño–Southern Oscillation (ENSO) in the preceding winter through Indo–western Pacific Ocean capacitor (IPOC) effects. An enhanced East Asian summer monsoon and a low-level anticyclonic anomaly over the tropical western North Pacific in the post–El Niño summer reinforce low-level water vapor transport from the tropics with increased occurrence of NWPARs. The strong coupling with ENSO and IPOC indicates a high predictability of anomalous summertime NWPAR activity.


2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


2020 ◽  
Vol 20 (21) ◽  
pp. 13011-13022
Author(s):  
Yuanhong Zhao ◽  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Xin Lin ◽  
Antoine Berchet ◽  
...  

Abstract. Decadal trends and interannual variations in the hydroxyl radical (OH), while poorly constrained at present, are critical for understanding the observed evolution of atmospheric methane (CH4). Through analyzing the OH fields simulated by the model ensemble of the Chemistry–Climate Model Initiative (CCMI), we find (1) the negative OH anomalies during the El Niño years mainly corresponding to the enhanced carbon monoxide (CO) emissions from biomass burning and (2) a positive OH trend during 1980–2010 dominated by the elevated primary production and the reduced loss of OH due to decreasing CO after 2000. Both two-box model inversions and variational 4D inversions suggest that ignoring the negative anomaly of OH during the El Niño years leads to a large overestimation of the increase in global CH4 emissions by up to 10 ± 3 Tg yr−1 to match the observed CH4 increase over these years. Not accounting for the increasing OH trends given by the CCMI models leads to an underestimation of the CH4 emission increase by 23 ± 9 Tg yr−1 from 1986 to 2010. The variational-inversion-estimated CH4 emissions show that the tropical regions contribute most to the uncertainties related to OH. This study highlights the significant impact of climate and chemical feedbacks related to OH on the top-down estimates of the global CH4 budget.


2020 ◽  
Author(s):  
Saginela Ravindra Babu ◽  
Madineni Venkat Ratnam ◽  
Ghouse Basha ◽  
Shantanu Kumar Pani ◽  
Neng-Huei Lin

Abstract. In this work, the detailed changes in the structure, dynamics and trace gases within the Asian summer monsoon anticyclone (ASMA) during extreme El Niño of 2015–16 is delineated by using Aura Microwave Limb Sounder (MLS) measurements, COSMIC Radio Occultation (RO) temperature, and NCEP reanalysis products. We have considered the individual months of July and August 2015 for the present study. The results show that the ASMA structure was quite different in 2015 as compared to the long-term (2005–2014) mean. In July, the spatial extension of the ASMA shows larger than the long-term mean in all the regions except over northeastern Asia, where, it exhibits a strong southward shift in its position. The ASMA splits into two and western Pacific mode is evident in August. Interestingly, the subtropical westerly jet (STJ) shifted southward from its normal position over northeastern Asia as resulted mid latitude air moved southward in 2015. Intense Rossby wave breaking events along with STJ are also found in July 2015. Due to these dynamical changes in the ASMA, pronounced changes in the ASMA tracers are noticed in 2015 compared to the long-term mean. A 30 % (20 %) decrease in carbon monoxide (water vapor) at 100 hPa is observed in July over most of the ASMA region, whereas in August the drop is strongly concentrated in the edges of the ASMA. Prominent increase of O3 (> 40 %) at 100 hPa is clearly evident within the ASMA in July, whereas in August the increase is strongly located (even at 121 hPa) over the western edges of the ASMA. Further, the temperature around the tropopause shows significant positive anomalies (~ 5 K) within the ASMA in 2015. Overall, warming of the tropopause region due to the increased O3 weakens the anticyclone and further supported the weaker ASMA in 2015 reported by previous studies.


Sign in / Sign up

Export Citation Format

Share Document