scholarly journals Interannual Variability and Trends of Extratropical Ozone. Part I: Northern Hemisphere

2008 ◽  
Vol 65 (10) ◽  
pp. 3013-3029 ◽  
Author(s):  
Xun Jiang ◽  
Steven Pawson ◽  
Charles D. Camp ◽  
J. Eric Nielsen ◽  
Run-Lie Shia ◽  
...  

The authors apply principal component analysis (PCA) to the extratropical total column ozone from the combined merged ozone data product and the European Centre for Medium-Range Weather Forecasts assimilated ozone from January 1979 to August 2002. The interannual variability (IAV) of extratropical O3 in the Northern Hemisphere (NH) is characterized by four main modes. Attributable to dominant dynamical effects, these four modes account for nearly 60% of the total ozone variance in the NH. The patterns of variability are distinctly different from those derived for total O3 in the tropics. To relate the derived patterns of O3 to atmospheric dynamics, similar decompositions are performed for the 30–100-hPa geopotential thickness. The results reveal intimate connections between the IAV of total ozone and the atmospheric circulation. The first two leading modes are nearly zonally symmetric and represent the connections to the annular modes and the quasi-biennial oscillation. The other two modes exhibit in-quadrature, wavenumber-1 structures that, when combined, describe the displacement of the polar vortices in response to planetary waves. In the NH, the extrema of these combined modes have preferred locations that suggest fixed topographical and land–sea thermal forcing of the involved planetary waves. Similar spatial patterns and trends in extratropical column ozone are simulated by the Goddard Earth Observation System chemistry–climate model (GEOS-CCM). The decreasing O3 trend is captured in the first mode. The largest trend occurs at the North Pole, with values ∼−1 Dobson Unit (DU) yr−1. There is almost no trend in tropical O3. The trends derived from PCA are confirmed using a completely independent method, empirical mode decomposition, for zonally averaged O3 data. The O3 trend is also captured by mode 1 in the GEOS-CCM, but the decrease is substantially larger than that in the real atmosphere.

2008 ◽  
Vol 65 (10) ◽  
pp. 3030-3041 ◽  
Author(s):  
Xun Jiang ◽  
Steven Pawson ◽  
Charles D. Camp ◽  
J. Eric Nielsen ◽  
Run-Lie Shia ◽  
...  

A principal component analysis (PCA) is applied to the Southern Hemisphere (SH) total column ozone following the method established for analyzing the data in the Northern Hemisphere (NH) in a companion paper. The interannual variability (IAV) of extratropical O3 in the SH is characterized by four main modes, which account for 75% of the total variance. The first two leading modes are approximately zonally symmetric and relate to the Southern Hemisphere annular mode and the quasi-biennial oscillation. The third and fourth modes exhibit wavenumber-1 structures. Contrary to the Northern Hemisphere, the third and fourth modes are not related to stationary waves. Similar results are obtained for the 30–100-hPa geopotential thickness. The decreasing O3 trend in the SH is captured in the first mode. The largest trend is at the South Pole, with value ∼−2 Dobson Units (DU) yr−1. Both the spatial pattern and trends in the column ozone are captured by the Goddard Earth Observation System chemistry–climate model (GEOS-CCM) in the SH.


2008 ◽  
Vol 8 (2) ◽  
pp. 251-264 ◽  
Author(s):  
R. Müller ◽  
J.-U. Grooß ◽  
C. Lemmen ◽  
D. Heinze ◽  
M. Dameris ◽  
...  

Abstract. We investigate the extent to which quantities that are based on total column ozone are applicable as measures of ozone loss in the polar vortices. Such quantities have been used frequently in ozone assessments by the World Meteorological Organization (WMO) and also to assess the performance of chemistry-climate models. The most commonly considered quantities are March and October mean column ozone poleward of geometric latitude 63° and the spring minimum of daily total ozone minima poleward of a given latitude. Particularly in the Arctic, the former measure is affected by vortex variability and vortex break-up in spring. The minimum of daily total ozone minima poleward of a particular latitude is debatable, insofar as it relies on one single measurement or model grid point. We find that, for Arctic conditions, this minimum value often occurs in air outside the polar vortex, both in the observations and in a chemistry-climate model. Neither of the two measures shows a good correlation with chemical ozone loss in the vortex deduced from observations. We recommend that the minimum of daily minima should no longer be used when comparing polar ozone loss in observations and models. As an alternative to the March and October mean column polar ozone we suggest considering the minimum of daily average total ozone poleward of 63° equivalent latitude in spring (except for winters with an early vortex break-up). Such a definition both obviates relying on one single data point and reduces the impact of year-to-year variability in the Arctic vortex break-up on ozone loss measures. Further, this measure shows a reasonable correlation (r=–0.75) with observed chemical ozone loss. Nonetheless, simple measures of polar ozone loss must be used with caution; if possible, it is preferable to use more sophisticated measures that include additional information to disentangle the impact of transport and chemistry on ozone.


2013 ◽  
Vol 6 (10) ◽  
pp. 2533-2548 ◽  
Author(s):  
P. K. Bhartia ◽  
R. D. McPeters ◽  
L. E. Flynn ◽  
S. Taylor ◽  
N. A. Kramarova ◽  
...  

Abstract. We describe the algorithm that has been applied to develop a 42 yr record of total ozone and ozone profiles from eight Solar Backscatter UV (SBUV) instruments launched on NASA and NOAA satellites since April 1970. The Version 8 (V8) algorithm was released more than a decade ago and has been in use since then at NOAA to produce their operational ozone products. The current algorithm (V8.6) is basically the same as V8, except for updates to instrument calibration, incorporation of new ozone absorption cross-sections, and new ozone and cloud height climatologies. Since the V8 algorithm has been optimized for deriving monthly zonal mean (MZM) anomalies for ozone assessment and model comparisons, our emphasis in this paper is primarily on characterizing the sources of errors that are relevant for such studies. When data are analyzed this way the effect of some errors, such as vertical smoothing of short-term variability, and noise due to clouds and aerosols diminish in importance, while the importance of others, such as errors due to vertical smoothing of the quasi-biennial oscillation (QBO) and other periodic and aperiodic variations, become more important. With V8.6 zonal mean data we now provide smoothing kernels that can be used to compare anomalies in SBUV profile and partial ozone columns with models. In this paper we show how to use these kernels to compare SBUV data with Microwave Limb Sounder (MLS) ozone profiles. These kernels are particularly useful for comparisons in the lower stratosphere where SBUV profiles have poor vertical resolution but partial column ozone values have high accuracy. We also provide our best estimate of the smoothing errors associated with SBUV MZM profiles. Since smoothing errors are the largest source of uncertainty in these profiles, they can be treated as error bars in deriving interannual variability and trends using SBUV data and for comparing with other measurements. In the V8 and V8.6 algorithms we derive total column ozone by integrating the SBUV profiles, rather than from a separate set of wavelengths, as was done in previous algorithm versions. This allows us to extend the total ozone retrieval to 88° solar zenith angle (SZA). Since the quality of total column data is affected by reduced sensitivity to ozone in the lower atmosphere by cloud and Rayleigh attenuation, which gets worse with increasing SZA, we provide our best estimate of these errors, as well as the kernels that can be used to test the sensitivity of the derived columns to long-term changes in ozone in the lower atmosphere.


2007 ◽  
Vol 7 (3) ◽  
pp. 7137-7169
Author(s):  
G. E. Bodeker ◽  
H. Garny ◽  
D. Smale ◽  
M. Dameris ◽  
R. Deckert

Abstract. One of the most significant events in the evolution of the ozone layer over southern mid-latitudes since the late 1970s was the large decrease observed in 1985. This event remains unexplained and most state-of-the-art atmospheric chemistry-transport models are unable to reproduce it. In this study, the 1985 southern hemisphere mid-latitude total column ozone anomaly is analyzed in detail based on observed daily total column ozone fields, stratospheric dynamical fields, and calculated diagnostics of stratospheric mixing. The 1985 anomaly appears to result from a combination of (i) an anomaly in the meridional circulation resulting from the westerly phase of the equatorial quasi-biennial oscillation (QBO), (ii) weaker transport of ozone from its tropical mid-stratosphere source across the sub-tropical barrier to mid-latitudes related to the particular phasing of the QBO with respect to the annual cycle, and (iii) a solar cycle induced local reduction in ozone. The results based on observations are compared and contrasted with analyses of ozone and dynamical fields from the ECHAM4.L39(DLR)/CHEM coupled chemistry-climate model (hereafter referred to as E39C). Equatorial winds in the E39C model are nudged towards observed winds between 10° S and 10° N and the ability of this model to produce an ozone anomaly in 1985, similar to that observed, confirms the role of the QBO in the anomaly.


2007 ◽  
Vol 7 (4) ◽  
pp. 9829-9866
Author(s):  
R. Müller ◽  
J.-U. Grooß ◽  
C. Lemmen ◽  
D. Heinze ◽  
M. Dameris ◽  
...  

Abstract. We investigate the extent to which commonly considered quantities, based on total column ozone observations and simulations, are applicable as measures of ozone loss in the polar vortices. Such quantities have been used frequently in ozone assessments by the World Meteorological Organization (WMO) and to assess the performance of chemistry-climate models. The most commonly considered quantity is monthly mean column ozone poleward of a latitude of 63° in spring. For the Arctic, these monthly means were found to be insensitive to the exact choice of the latitude threshold, unlike the Antarctic where greater sensitivity was found. Choosing a threshold based on the location of the transport barrier at the vortex boundary instead of geometric latitude led to a roughly similar year-to-year variability of the monthly means, but in particular years deviations of several tens of Dobson units occurred. Moreover, the minimum of daily total ozone minima poleward of a particular latitude, another popular measure, is debatable, insofar as it relies on one single measurement or model grid point. For Arctic conditions, this minimum value occurred often in air outside polar vortex, both in the observations and in a chemistry-climate model. As a result, we recommend that the minimum of daily minima no longer be used when comparing polar ozone loss in observations and models. As a possible alternative, we suggest considering the minimum of daily average total ozone poleward of a particular equivalent latitude (or in the vortex) in spring. This definition both obviates relying on one single data point and reduces the impact of year-to-year variability in the Arctic vortex breakup on ozone loss measures. However, compact relations of such simple measures with meteorological quantities that describe the potential for polar heterogeneous chlorine activation and thus ozone loss were not found. Therefore, we argue that where possible, more sophisticated measures of chemical polar ozone loss that include additional information to disentangle the impact of transport and chemistry on ozone, should be employed.


2006 ◽  
Vol 6 (12) ◽  
pp. 5105-5120 ◽  
Author(s):  
T. Erbertseder ◽  
V. Eyring ◽  
M. Bittner ◽  
M. Dameris ◽  
V. Grewe

Abstract. Total column ozone is used to trace the dynamics of the lower and middle stratosphere which is governed by planetary waves. In order to analyse the planetary wave activity a Harmonic Analysis is applied to global multi-year total ozone observations from the Total Ozone Monitoring Spectrometer (TOMS). As diagnostic variables we introduce the hemispheric ozone variability indices one and two. They are defined as the hemispheric means of the amplitudes of the zonal waves number one and two, respectively, as traced by the total ozone field. The application of these indices as a simple diagnostic for the evaluation of coupled chemistry-climate models (CCMs) is demonstrated by comparing results of the CCM ECHAM4.L39(DLR)/CHEM (hereafter: E39/C) against satellite observations. It is quantified to what extent a multi-year model simulation of E39/C (representing "2000" climate conditions) is able to reproduce the zonal and hemispheric planetary wave activity derived from TOMS data (1996–2004, Version 8). Compared to the reference observations the hemispheric ozone variability indices one and two of E39/C are too high in the Northern Hemisphere and too low in the Southern Hemisphere. In the Northern Hemisphere, where the agreement is generally better, E39/C produces too strong a planetary wave one activity in winter and spring and too high an interannual variability. For the Southern Hemisphere we reveal that the indices from observations and model differ significantly during the ozone hole season. The indices are used to give reasons for the late formation of the Antarctic ozone hole, the insufficient vortex elongation and eventually the delayed final warming in E39/C. In general, the hemispheric ozone variability indices can be regarded as a simple and robust diagnostic to quantify model-observation differences concerning planetary wave activity. It allows a first-guess on how the dynamics is represented in a model simulation before applying costly and more specific diagnostics.


2012 ◽  
Vol 12 (5) ◽  
pp. 13161-13199 ◽  
Author(s):  
L. Frossard ◽  
H. E. Rieder ◽  
M. Ribatet ◽  
J. Staehelin ◽  
J. A. Maeder ◽  
...  

Abstract. We use models for mean and extreme values of total column ozone on spatial scales to analyze "fingerprints" of atmospheric dynamics and chemistry on long-term ozone changes at northern and southern mid-latitudes. The r-largest order statistics method is used for pointwise analysis of extreme events in low and high total ozone (termed ELOs and EHOs, respectively). For the corresponding mean value analysis a pointwise autoregressive moving average model (ARMA) is used. The statistical models include important atmospheric covariates to describe the dynamical and chemical state of the atmosphere: the solar cycle, the Quasi-Biennial Oscillation (QBO), ozone depleting substances (ODS) in terms of equivalent effective stratospheric chlorine (EESC), the North Atlantic Oscillation (NAO), the Antarctic Oscillation (AAO), the El~Niño/Southern Oscillation (ENSO), and aerosol load after the volcanic eruptions of El Chichón and Mt. Pinatubo. The influence of the individual covariates on mean and extreme levels in total column ozone is derived on a grid cell basis. The results show that "fingerprints", i.e., significant influence, of dynamical and chemical features are captured in both the "bulk" and the tails of the ozone distribution, respectively described by means and EHOs/ELOs. While results for the solar cycle, QBO and EESC are in good agreement with findings of earlier studies, unprecedented spatial fingerprints are retrieved for the dynamical covariates.


2018 ◽  
Vol 18 (11) ◽  
pp. 8409-8438 ◽  
Author(s):  
Sandip S. Dhomse ◽  
Douglas Kinnison ◽  
Martyn P. Chipperfield ◽  
Ross J. Salawitch ◽  
Irene Cionni ◽  
...  

Abstract. >We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, which are the main drivers of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10–20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates of ozone and chlorine, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, quantifying the effect in the simulations analysed here is limited by the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ∼ 15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also lengthens ozone return by ∼ 15 years, again mainly through its impact in the tropics. Overall, our estimates of ozone return dates are uncertain due to both uncertainties in future scenarios, in particular those of greenhouse gases, and uncertainties in models. The scenario uncertainty is small in the short term but increases with time, and becomes large by the end of the century. There are still some model–model differences related to well-known processes which affect ozone recovery. Efforts need to continue to ensure that models used for assessment purposes accurately represent stratospheric chemistry and the prescribed scenarios of ozone-depleting substances, and only those models are used to calculate return dates. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that it is more important to have multi-member (at least three) ensembles for each scenario from every established participating model, rather than a large number of individual models.


2007 ◽  
Vol 7 (21) ◽  
pp. 5625-5637 ◽  
Author(s):  
G. E. Bodeker ◽  
H. Garny ◽  
D. Smale ◽  
M. Dameris ◽  
R. Deckert

Abstract. One of the most significant events in the evolution of the ozone layer over southern mid-latitudes since the late 1970s was the large decrease observed in 1985. This event remains unexplained and a detailed investigation of the mechanisms responsible for the event has not previously been undertaken. In this study, the 1985 Southern Hemisphere mid-latitude total column ozone anomaly is analyzed in detail based on observed daily total column ozone fields, stratospheric dynamical fields, and calculated diagnostics of stratospheric mixing. The 1985 anomaly appears to result from a combination of (i) an anomaly in the meridional circulation resulting from the westerly phase of the equatorial quasi-biennial oscillation (QBO), (ii) weaker transport of ozone from its tropical mid-stratosphere source across the sub-tropical barrier to mid-latitudes related to the particular phasing of the QBO with respect to the annual cycle, and (iii) a solar cycle induced reduction in ozone. Similar QBO and solar cycle influences prevailed in 1997 and 2006 when again total column ozone was found to be suppressed over southern mid-latitudes. The results based on observations are compared and contrasted with analyses of ozone and dynamical fields from the ECHAM4.L39(DLR)/CHEM coupled chemistry-climate model (hereafter referred to as E39C). Equatorial winds in the E39C model are nudged towards observed winds between 10° S and 10° N and the ability of this model to produce an ozone anomaly in 1985, similar to that observed, confirms the role of the QBO in effecting the anomaly.


2013 ◽  
Vol 6 (6) ◽  
pp. 10081-10115 ◽  
Author(s):  
E. W. Chiou ◽  
P. K. Bhartia ◽  
R. D. McPeters ◽  
D. G. Loyola ◽  
M. Coldewey-Egbers ◽  
...  

Abstract. This paper describes the comparison of the variability of total column ozone inferred from the three independent multi-year data records, namely, (i) SBUV(v8.6) profile total ozone, (ii) GTO(GOME-Type total ozone), and (iii) Ground-based total ozone data records covering the 16-yr overlap period (March 1996 through June 2011). Analyses are conducted based on area weighted zonal means for (0–30° S), (0–30° N), (50–30° S), and (30–60° N). It has been found that on average, the differences in monthly zonal mean total ozone vary between −0.32 to 0.76 % and are well within 1%. For "GTO minus SBUV", the standard deviations and ranges (maximum minus minimum) of the differences regarding monthly zonal mean total ozone vary between 0.58 to 0.66% and 2.83 to 3.82% respectively, depending on the latitude band. The corresponding standard deviations and ranges regarding the differences in monthly zonal mean anomalies show values between 0.40 to 0.59% and 2.19 to 3.53%. The standard deviations and ranges of the differences "Ground-based minus SBUV" regarding both monthly zonal means and anomalies are larger by a factor of 1.4 to 2.9 in comparison to "GTO minus SBUV". The Ground-based zonal means, while show no systematic differences, demonstrate larger scattering of monthly data compared to satellite-based records. The differences in the scattering are significantly reduced if seasonal zonal averages are analyzed. The trends of the differences "GTO minus SBUV" and "Ground-based minus SBUV" are found to vary between −0.04 and 0.12% yr−1 (−0.11 and 0.31 DU yr−1). These negligibly small trends have provided strong evidence that there are no significant time dependent differences among these multi-year total ozone data records. Analyses of the deviations from pre-1980 level indicate that for the overlap period of 1996 to 2010, all three data records show gradual recovery at (30–60° N) from −5% in 1996 to −2% in 2010. The corresponding recovery at (50–30° S) is not as obvious until after 2006.


Sign in / Sign up

Export Citation Format

Share Document