Important Factors for the Development of the Asian–Northwest Pacific Summer Monsoon*

2009 ◽  
Vol 22 (3) ◽  
pp. 649-669 ◽  
Author(s):  
Hiroaki Ueda ◽  
Masamichi Ohba ◽  
Shang-Ping Xie

Abstract The Asian and northwest (NW) Pacific summer monsoons exhibit stepwise transitions with rapid changes in precipitation at intervals of roughly 1 month from mid-May through mid-July. A new method is developed to evaluate the effects of sea surface temperature (SST) and other changes on these rapid monsoon transitions. The latter changes include solar radiation, land memory, and atmospheric transient (SLAT) effects. The method compares two sets of atmospheric general circulation model (GCM) simulations, forced with observed seasonally varying and piecewise constant SST, respectively. The results indicate that the SLAT effects dominate all of the major transitions, except during mid-June when the SST cooling induced by the strong monsoon westerlies is a significant negative feedback resisting the intensification and northward advance of monsoon convection. The final regional onset of the monsoon system takes place in mid-July over the subtropical NW Pacific characterized by the abrupt enhancement of deep convection there. Despite a weak SST effect from the GCM assessment herein, major changes in convection and circulation are confined to the ocean east of the Philippines during the mid-July transition, suggesting the importance of transient atmospheric adjustments. Intense convection over other regions induces subsidence over the subtropical northwest Pacific during June, contributing to the delayed onset there. Satellite observations reveal a slow buildup of free-tropospheric moisture over the NW Pacific, leading to an abrupt intensification of convective precipitation in mid-July, suggesting a possibility that the gradual tropospheric moistening eventually triggers a threshold transition.

2010 ◽  
Vol 23 (13) ◽  
pp. 3676-3698 ◽  
Author(s):  
Akira Kuwano-Yoshida ◽  
Shoshiro Minobe ◽  
Shang-Ping Xie

Abstract The precipitation response to sea surface temperature (SST) gradients associated with the Gulf Stream is investigated using an atmospheric general circulation model. Forced by observed SST, the model simulates a narrow band of precipitation, surface convergence, and evaporation that closely follows the Gulf Stream, much like satellite observations. Such a Gulf Stream rainband disappears in the model when the SST front is removed by horizontally smoothing SST. The analysis herein shows that it is convective precipitation that is sensitive to SST gradients. The Gulf Stream anchors a convective rainband by creating surface wind convergence and intensifying surface evaporation on the warmer flank. Deep convection develops near the Gulf Stream in summer when the atmosphere is conditionally unstable. As a result, a narrow band of upward velocity develops above the Gulf Stream throughout the troposphere in summer, while it is limited to the lower troposphere in other seasons.


2021 ◽  
Author(s):  
Rishav Goyal ◽  
Martin Jucker ◽  
Alex Sen Gupta ◽  
Harry Hendon ◽  
Matthew England

Abstract A distinctive feature of the Southern Hemisphere (SH) extratropical atmospheric circulation is the quasi-stationary zonal wave 3 (ZW3) pattern, characterized by three high and three low-pressure centers around the SH extratropics. This feature is present in both the mean atmospheric circulation and its variability on daily, seasonal and interannual timescales. While the ZW3 pattern has significant impacts on meridional heat transport and Antarctic sea ice extent, the reason for its existence remains uncertain, although it has long been assumed to be linked to the existence of three major land masses in the SH extratropics. Here we use an atmospheric general circulation model to show that the stationery ZW3 pattern is instead driven by zonal asymmetric deep atmospheric convection in the tropics, with little to no role played by the orography or land masses in the extratropics. Localized regions of deep convection in the tropics form a local Hadley cell which in turn creates a wave source in the subtropics that excites a poleward and eastward propagating wave train which forms stationary waves in the SH high latitudes. Our findings suggest that changes in tropical deep convection, either due to natural variability or climate change, will impact the zonal wave 3 pattern, with implications for Southern Hemisphere climate, ocean circulation, and sea-ice.


2000 ◽  
Vol 53 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Paul G. Myers ◽  
Eelco J. Rohling

AbstractAn oceanic general circulation model, previously used to simulate the conditions associated with the Holocene Sapropel S1, is used to simulate the effects of a climate deterioration (represented as a cooling event) on the sapropelic circulation mode. The enhanced cooling (2°–3°C) induces deep convection in the Adriatic and the Gulf of Lions and intermediate water formation in the Aegean, where in all cases there had previously been only stagnant unventilated waters. The depths of ventilation (to ∼1250 m) are in agreement with core data from this period. The short decadal timescales involved in modifying the sapropelic circulation suggest that such a climatic deterioration may be associated with the interruption of S1 between 7100 and 6900 14C yr B.P., which divided the sapropel into two subunits.


2009 ◽  
Vol 22 (8) ◽  
pp. 2023-2038 ◽  
Author(s):  
Yan Du ◽  
Shang-Ping Xie ◽  
Gang Huang ◽  
Kaiming Hu

Abstract El Niño induces a basin-wide increase in tropical Indian Ocean (TIO) sea surface temperature (SST) with a lag of one season. The north IO (NIO), in particular, displays a peculiar double-peak warming with the second peak larger in magnitude and persisting well through the summer. Motivated by recent studies suggesting the importance of the TIO warming for the Northwest Pacific and East Asian summer monsoons, the present study investigates the mechanisms for the second peak of the NIO warming using observations and general circulation models. This analysis reveals that internal air–sea interaction within the TIO is key to sustaining the TIO warming through summer. During El Niño, anticyclonic wind curl anomalies force a downwelling Rossby wave in the south TIO through Walker circulation adjustments, causing a sustained SST warming in the tropical southwest IO (SWIO) where the mean thermocline is shallow. During the spring and early summer following El Niño, this SWIO warming sustains an antisymmetric pattern of atmospheric anomalies with northeasterly (northwesterly) wind anomalies north (south) of the equator. Over the NIO as the mean winds turn into southwesterly in May, the northeasterly anomalies force the second SST peak that persists through summer by reducing the wind speed and surface evaporation. Atmospheric general circulation model experiments show that the antisymmetric atmospheric pattern is a response to the TIO warming, suggestive of their mutual interaction. Thus, ocean dynamics and Rossby waves in particular are important for the warming not only locally in SWIO but also on the basin-scale north of the equator, a result with important implications for climate predictability and prediction.


2017 ◽  
Vol 17 (10) ◽  
pp. 6353-6371 ◽  
Author(s):  
Hannah M. Horowitz ◽  
Daniel J. Jacob ◽  
Yanxu Zhang ◽  
Theodore S. Dibble ◽  
Franz Slemr ◽  
...  

Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0 ∕ HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere–ocean Hg0 ∕ HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting chemical lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the  ∼  6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM  ≡  Hg0 + HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII–organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere. The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM–ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0–30 %). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO2 and HO2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80 % of HgII deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for HgII reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO2 and NO2 for second-stage HgBr oxidation.


2009 ◽  
Vol 66 (11) ◽  
pp. 3277-3296 ◽  
Author(s):  
James J. Benedict ◽  
David A. Randall

Abstract The detailed dynamic and thermodynamic space–time structures of the Madden–Julian oscillation (MJO) as simulated by the superparameterized Community Atmosphere Model version 3.0 (SP-CAM) are analyzed. Superparameterization involves substituting conventional boundary layer, moist convection, and cloud parameterizations with a configuration of cloud-resolving models (CRMs) embedded in each general circulation model (GCM) grid cell. Unlike most GCMs that implement conventional parameterizations, the SP-CAM displays robust atmospheric variability on intraseasonal space and time (30–60 days) scales. The authors examine a 19-yr SP-CAM simulation based on the Atmospheric Model Intercomparison Project protocol, forced by prescribed sea surface temperatures. Overall, the space–time structures of MJO convective disturbances are very well represented in the SP-CAM. Compared to observations, the model produces a similar vertical progression of increased moisture, warmth, and heating from the boundary layer to the upper troposphere as deep convection matures. Additionally, important advective and convective processes in the SP-CAM compare favorably with those in observations. A deficiency of the SP-CAM is that simulated convective intensity organized on intraseasonal space–time scales is overestimated, particularly in the west Pacific. These simulated convective biases are likely due to several factors including unrealistic boundary layer interactions, a lack of weakening of the simulated disturbance over the Maritime Continent, and mean state differences.


2016 ◽  
Vol 29 (2) ◽  
pp. 455-479 ◽  
Author(s):  
Derek J. Posselt ◽  
Bruce Fryxell ◽  
Andrea Molod ◽  
Brian Williams

Abstract Parameterization of processes that occur on length scales too small to resolve on a computational grid is a major source of uncertainty in global climate models. This study investigates the relative importance of a number of parameters used in the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model, focusing on cloud, convection, and boundary layer parameterizations. Latin hypercube sampling is used to generate a few hundred sets of 19 candidate physics parameters, which are subsequently used to generate ensembles of single-column model realizations of cloud content, precipitation, and radiative fluxes for four different field campaigns. A Gaussian process model is then used to create a computationally inexpensive emulator for the simulation code that can be used to determine a measure of relative parameter sensitivity by sampling the response surface for a very large number of input parameter sets. Parameter sensitivities are computed for different geographic locations and seasons to determine whether the intrinsic sensitivity of the model parameterizations changes with season and location. The results indicate the same subset of parameters collectively control the model output across all experiments, independent of changes in the environment. These are the threshold relative humidity for cloud formation, the ice fall speeds, convective and large-scale autoconversion, deep convection relaxation time scale, maximum convective updraft diameter, and minimum ice effective radius. However, there are differences in the degree of parameter sensitivity between continental and tropical convective cases, as well as systematic changes in the degree of parameter influence and parameter–parameter interaction.


2017 ◽  
Author(s):  
Sebastian G. Mutz ◽  
Todd A. Ehlers ◽  
Martin Werner ◽  
Gerrit Lohmann ◽  
Christian Stepanek ◽  
...  

Abstract. The denudation history of active orogens is often interpreted in the context of modern climate and vegetation gradients. Here we address the validity of this approach and ask the question: what are the spatial and temporal variations in paleo-climate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the equator) paleo-climate simulations from the ECHAM5 global Atmospheric General Circulation Model and a statistical cluster analysis of climate over different orogens (Andes, Himalaya, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ~ 3 Ma), the Last Glacial Maximum (LGM, ~ 21 ka), Mid Holocene (MH, ~ 6 ka) and Pre-Industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability of precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences to the PI climate are observed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate, and shows enhanced precipitation in the temperate Andes, and coastal regions for both SE Alaska and the US Pacific Northwest Pacific. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time-slice experiments conducted here. Taken together, these results highlight significant changes in Late Cenozoic regional climatology over the last ~ 3 Ma. Finally, we document regions where the largest magnitudes of Late Cenozoic changes in precipitation and temperature occur and offer the highest potential for future observational studies interested in quantifying the impact of climate change on denudation and weathering rates.


Sign in / Sign up

Export Citation Format

Share Document