A Reduced Radiation Grid for the ECMWF Integrated Forecasting System

2008 ◽  
Vol 136 (12) ◽  
pp. 4760-4772 ◽  
Author(s):  
Jean-Jacques Morcrette ◽  
George Mozdzynski ◽  
Martin Leutbecher

Abstract A specific interface between the radiation transfer calculations and the rest of the ECMWF model was introduced in 2003, potentially providing substantial economy in computer time by reducing the spatial resolution at which radiation transfer is evaluated, without incurring some of the deficiencies produced by the sampling strategy previously used in the ECMWF model. The introduction of a new more-computer-intensive radiation package (McRad) in June 2007 has led to a differentiated use of this interface depending on the applications. The history of the interface, how it is used, and its impact when using the new radiation scheme are discussed here. For a given model resolution, the impact of a lower-resolution radiation grid on the model behavior is studied here, in the context of 10-day forecasts at high resolution (TL799L91), of medium-resolution forecasts (TL399L62) used in the Ensemble Prediction System (EPS), and of low-resolution simulations (TL159L91) as used for model development and seasonal forecasts with an interactive ocean. Results for the high-resolution forecasts are compared in terms of objective scores and of the quality of “surface” parameters (total cloud cover, 2-m temperature and specific humidity, and 10-m wind) usually verified in a meteorological context. For the medium-resolution forecasts, the impact of the radiation grid is studied in terms of the potential increase in the efficiency of the EPS system without deteriorating the probabilistic skill. The impact of changes in the radiation grid resolution on the low-resolution versions of model is discussed in terms of cloud–radiation interactions and ocean surface temperature. For these operational applications, a radiation grid with a coarsening factor even as large as 2.5 for TL799L91 and TL159L91 and 4.2 for the EPS TL399L62 is shown to give results free of any systematic differences linked to the spatial interpolation and to the coarser resolution of both the inputs to and the outputs from the radiation transfer schemes.

2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Matteo Mana ◽  
Davide Astolfi ◽  
Francesco Castellani ◽  
Cathérine Meißner

Abstract The importance of accurately forecasting the power production of wind farms is boosting the development of meteorological models and their processing. This work is a discussion of different forecast configurations for predicting the day ahead production of a wind farm sited in a moderately complex terrain. The numerical weather prediction (NWP) model MetCoOp Ensemble Prediction System with 2.5 km resolution focusing on the wind farm area is dynamically downscaled by the computational fluid model (CFD) model WindSim. The transfer of the NWP model to the CFD model can be done using NWP results from various heights above ground and using all or parts of the nodes of the NWP model within the wind farm area. In this work, many different forecasting configurations are validated and the impact on the forecast performance is discussed. The NWP-CFD downscaling results are compared to a day ahead forecast obtained through ANN methods and to the observed production. The main result of this work is that a deterministic downscaling method like CFD simulations can perform as good or better than statistical approaches when using high-resolution NWP models and more NWP model data.


2009 ◽  
Vol 137 (4) ◽  
pp. 1438-1459 ◽  
Author(s):  
Antônio Marcos Mendonça ◽  
JoséPaulo Bonatti

Abstract The impact of modifications of the perturbation method based on empirical orthogonal functions (EOFs) used operationally upon the ensemble prediction system (EPS) at the Center for Weather Prediction and Climate Studies/National Institute for Space Research (CPTEC/INPE) is evaluated. The main changes proposed in this study are to apply the EOF method to perturb the midlatitudes, apply additional perturbations to the surface pressure (P) and specific humidity (Q) fields, and compute regional perturbations over South America. The impact of these modifications in the characteristics of the initial perturbations and in the quality of the EPS forecasts is investigated. The EPS forecasts are evaluated through average statistical scores over the period 15 December 2004–15 February 2005. The statistical scores used in the evaluation are pattern anomaly correlation, root-mean-square error, ensemble spread, Brier skill score, and perturbation versus error correlation analysis (PECA). Results indicate that with the inclusion of perturbations on P and Q, EOF-based perturbations acquire a more baroclinic structure. It is also observed that the simultaneous application of additional perturbations both in the extratropics and to the P and Q fields improves the performance of CPTEC EPS and enhances the quality of forecast perturbations. Moreover, regional EOF-based perturbations computed over South America have positive impact on the ensemble forecasts over the target region.


2019 ◽  
Vol 148 (1) ◽  
pp. 63-81 ◽  
Author(s):  
Kevin Bachmann ◽  
Christian Keil ◽  
George C. Craig ◽  
Martin Weissmann ◽  
Christian A. Welzbacher

Abstract We investigate the practical predictability limits of deep convection in a state-of-the-art, high-resolution, limited-area ensemble prediction system. A combination of sophisticated predictability measures, namely, believable and decorrelation scale, are applied to determine the predictable scales of short-term forecasts in a hierarchy of model configurations. First, we consider an idealized perfect model setup that includes both small-scale and synoptic-scale perturbations. We find increased predictability in the presence of orography and a strongly beneficial impact of radar data assimilation, which extends the forecast horizon by up to 6 h. Second, we examine realistic COSMO-KENDA simulations, including assimilation of radar and conventional data and a representation of model errors, for a convectively active two-week summer period over Germany. The results confirm increased predictability in orographic regions. We find that both latent heat nudging and ensemble Kalman filter assimilation of radar data lead to increased forecast skill, but the impact is smaller than in the idealized experiments. This highlights the need to assimilate spatially and temporally dense data, but also indicates room for further improvement. Finally, the examination of operational COSMO-DE-EPS ensemble forecasts for three summer periods confirms the beneficial impact of orography in a statistical sense and also reveals increased predictability in weather regimes controlled by synoptic forcing, as defined by the convective adjustment time scale.


2009 ◽  
Vol 24 (3) ◽  
pp. 812-828 ◽  
Author(s):  
Young-Mi Min ◽  
Vladimir N. Kryjov ◽  
Chung-Kyu Park

Abstract A probabilistic multimodel ensemble prediction system (PMME) has been developed to provide operational seasonal forecasts at the Asia–Pacific Economic Cooperation (APEC) Climate Center (APCC). This system is based on an uncalibrated multimodel ensemble, with model weights inversely proportional to the errors in forecast probability associated with the model sampling errors, and a parametric Gaussian fitting method for the estimate of tercile-based categorical probabilities. It is shown that the suggested method is the most appropriate for use in an operational global prediction system that combines a large number of models, with individual model ensembles essentially differing in size and model weights in the forecast and hindcast datasets being inconsistent. Justification for the use of a Gaussian approximation of the precipitation probability distribution function for global forecasts is also provided. PMME retrospective and real-time forecasts are assessed. For above normal and below normal categories, temperature forecasts outperform climatology for a large part of the globe. Precipitation forecasts are definitely more skillful than random guessing for the extratropics and climatological forecasts for the tropics. The skill of real-time forecasts lies within the range of the interannual variability of the historical forecasts.


2017 ◽  
Vol 10 (3) ◽  
pp. 1383-1402 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate – specifically the Madden–Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).


2007 ◽  
Vol 12 ◽  
pp. 5-18 ◽  
Author(s):  
S. Federico ◽  
E. Avolio ◽  
C. Bellecci ◽  
A. Lavagnini ◽  
R. L. Walko

Abstract. This study investigates the sensitivity of a moderate-intense storm that occurred over Calabria, southern Italy, to upper-tropospheric forcing from a Potential Vorticity (PV) perspective. A prominent mid-troposheric trough can be identified for this event, which occurred between 22–24 May 2002, and serves as the precursor agent for the moderate-intense precipitation recorded. The working hypothesis is that the uncertainty in the representation of the upper-level disturbance has a major impact on the precipitation forecast and we test the hypothesis in a two-step approach. First, we examine the degree of uncertainty by comparing five different scenarios in a Limited area model Ensemble Prediction System (LEPS) framework which utilizes the height of the dynamical tropopause as the discriminating variable. Pseudo water vapour images of different scenarios are compared to the corresponding METEOSAT 7 water vapour image at a specific time, antecedent to the rain occurrence over Calabria, in order to evaluate the reliability of the different precipitation scenarios simulated by the LEPS. Second, we examine the impact of upper tropospheric PV variations on precipitation by comparing model simulations with slightly different initial PV fields. Initial velocity and mass fields in each case are balanced with the chosen PV perturbation using a PV inversion technique. The results of this study support the working hypothesis.


2011 ◽  
Vol 11 (11) ◽  
pp. 30457-30485 ◽  
Author(s):  
P. Groenemeijer ◽  
G. C. Craig

Abstract. The stochastic Plant-Craig scheme for deep convection was implemented in the COSMO mesoscale model and used for ensemble forecasting. Ensembles consisting of 100 48 h forecasts at 7 km horizontal resolution were generated for a 2000 × 2000 km domain covering central Europe. Forecasts were made for seven case studies and characterized by different large-scale meteorological environments. Each 100 member ensemble consisted of 10 groups of 10 members, with each group driven by boundary and initial conditions from a selected member from the global ECMWF Ensemble Prediction System. The precipitation variability within and among these groups of members was computed, and it was found that the relative contribution to the ensemble variance introduced by the stochastic convection scheme was substantial, amounting to as much as 76% of the total variance in the ensemble in one of the studied cases. The impact of the scheme was not confined to the grid scale, and typically contributed 25–50% of the total variance even after the precipitation fields had been smoothed to a resolution of 35 km. The variability of precipitation introduced by the scheme was approximately proportional to the total amount of convection that occurred, while the variability due to large-scale conditions changed from case to case, being highest in cases exhibiting strong mid-tropospheric flow and pronounced meso- to synoptic scale vorticity extrema. The stochastic scheme was thus found to be an important source of variability in precipitation cases of weak large-scale flow lacking strong vorticity extrema, but high convective activity.


2016 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 km up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PBytes of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Center (LRZ) in Garching, Germany. About 140 TBytes of post-processed data are stored on the CINECA supercomputing center archives and are freely accessible to the community thanks to an EUDAT Data Pilot project. This paper presents the technical and scientific setup of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given: an improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increases is observed. It is also shown that including stochastic parameterisation in the low resolution runs helps to improve some aspects of the tropical climate – specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).


2006 ◽  
Vol 7 (1) ◽  
pp. 61-80 ◽  
Author(s):  
B. Decharme ◽  
H. Douville ◽  
A. Boone ◽  
F. Habets ◽  
J. Noilhan

Abstract This study focuses on the influence of an exponential profile of saturated hydraulic conductivity, ksat, with soil depth on the water budget simulated by the Interaction Soil Biosphere Atmosphere (ISBA) land surface model over the French Rhône River basin. With this exponential profile, the saturated hydraulic conductivity at the surface increases by approximately a factor of 10, and its mean value increases in the root zone and decreases in the deeper region of the soil in comparison with the values given by Clapp and Hornberger. This new version of ISBA is compared to the original version in offline simulations using the Rhône-Aggregation high-resolution database. Low-resolution simulations, where all atmospheric data and surface parameters have been aggregated, are also performed to test the impact of the modified ksat profile at the typical scale of a climate model. The simulated discharges are compared to observations from a dense network consisting of 88 gauging stations. Results of the high-resolution experiments show that the exponential profile of ksat globally improves the simulated discharges and that the assumption of an increase in saturated hydraulic conductivity from the soil surface to a depth close to the rooting depth in comparison with values given by Clapp and Hornberger is reasonable. Results of the scaling experiments indicate that this parameterization is also suitable for large-scale hydrological applications. Nevertheless, low-resolution simulations with both model versions overestimate evapotranspiration (especially from the plant transpiration and the wet fraction of the canopy) to the detriment of total runoff, which emphasizes the need for implementing subgrid distribution of precipitation and land surface properties in large-scale hydrological applications.


Sign in / Sign up

Export Citation Format

Share Document