Bow Echo Mesovortices. Part II: Their Genesis

2009 ◽  
Vol 137 (5) ◽  
pp. 1514-1532 ◽  
Author(s):  
Nolan T. Atkins ◽  
Michael St. Laurent

Abstract This two-part study examines the damaging potential and genesis of low-level, meso-γ-scale mesovortices formed within bow echoes. This was accomplished by analyzing quasi-idealized simulations of the 10 June 2003 Saint Louis bow echo event observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). In Part II of this study, mesovortex genesis was investigated for vortices formed at different stages of convective system evolution. During the early “cellular” stage, cyclonic mesovortices were observed. The cyclonic mesovortices formed from the tilting of baroclinic horizontal vorticity acquired by downdraft parcels entering the mesovortex. As the convective system evolved into a bow echo, cyclonic–anticyclonic mesovortex pairs were also observed. The vortex couplet was produced by a local updraft maximum that tilted baroclinically generated vortex lines upward into arches. The local updraft maximum was created by a convective-scale downdraft that produced an outward bulge in the gust front position. Cyclonic-only mesovortices were predominantly observed as the convective system evolved into the mature bow echo stage. Similar to the early cellular stage, these mesovortices formed from the tilting of baroclinic horizontal vorticity acquired by downdraft parcels entering the mesovortex. The downdraft parcels descended within the rear-inflow jet. The generality of the mesovortex genesis mechanisms was assessed by examining the structure of observed mesovortices in Doppler radar data. The mesovortex genesis mechanisms were also compared to others reported in the literature and the genesis of low-level mesocyclones in supercell thunderstorms.

2020 ◽  
Vol 148 (4) ◽  
pp. 1363-1388 ◽  
Author(s):  
Daniel M. Stechman ◽  
Greg M. McFarquhar ◽  
Robert M. Rauber ◽  
Michael M. Bell ◽  
Brian F. Jewett ◽  
...  

Abstract This study examines microphysical and thermodynamic characteristics of the 20 June 2015 mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) experiment, specifically within the transition zone (TZ), enhanced stratiform rain region (ESR), anvil region, melting layer (ML), and the rear inflow jet (RIJ). Analyses are developed from airborne optical array probe data and multiple-Doppler wind and reflectivity syntheses using data from the airborne NOAA Tail Doppler Radar (TDR) and ground-based Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. Seven spiral ascents/descents of the NOAA P-3 aircraft were executed within various regions of the 20 June MCS. Aggregation modified by sublimation was observed in each MCS region, regardless of whether the sampling was within the RIJ. Sustained sublimation and evaporation of precipitation in subsaturated layers led to a trend of downward moistening across the ESR spirals, with greater degrees of subsaturation maintained when in the vicinity of the descending RIJ. In all cases where melting was observed, the ML acted as a prominent thermodynamic boundary, with differing rates of change in temperature and relative humidity above and below the ML. Two spiral profiles coincident with the rear inflow notch provided unique observations within the TZ and were interpreted in the context of similar observations from the 29 June 2003 Bow Echo and Mesoscale Convective Vortex Experiment MCS. There, sublimation cooling and enhanced descent within the RIJ allowed ice particles to survive to temperatures as warm as +6.8°C before completely sublimating/evaporating.


2006 ◽  
Vol 134 (3) ◽  
pp. 791-806 ◽  
Author(s):  
Dustan M. Wheatley ◽  
Robert J. Trapp ◽  
Nolan T. Atkins

Abstract This study examines damaging-wind production by bow-shaped convective systems, commonly referred to as bow echoes. Recent idealized numerical simulations suggest that, in addition to descending rear inflow at the bow echo apex, low-level mesovortices within bow echoes can induce damaging straight-line surface winds. In light of these findings, detailed aerial and ground surveys of wind damage were conducted immediately following five bow echo events observed during the Bow Echo and Mesoscale Convective Vortex (MCV) Experiment (BAMEX) field phase. These damage locations were overlaid directly onto Weather Surveillance Radar-1988 Doppler (WSR-88D) images to (i) elucidate where damaging surface winds occurred within the bow-shaped convective system (in proximity to the apex, north of the apex, etc.), and then (ii) explain the existence of these winds in the context of the possible damaging-wind mechanisms. The results of this study provide clear observational evidence that low-level mesovortices within bow echoes can produce damaging straight-line winds at the ground. When present in the BAMEX dataset, mesovortex winds produced the most significant wind damage. Also in the BAMEX dataset, it was observed that smaller-scale bow echoes—those with horizontal scales of tens of kilometers or less—produced more significant wind damage than mature, extensive bow echoes (except when mesovortices were present within the larger-scale systems).


2005 ◽  
Vol 133 (8) ◽  
pp. 2275-2296 ◽  
Author(s):  
Nolan T. Atkins ◽  
Christopher S. Bouchard ◽  
Ron W. Przybylinski ◽  
Robert J. Trapp ◽  
Gary Schmocker

Abstract Detailed radar and damage survey analyses of a severe bow echo event that occurred on 10 June 2003 during the Bow Echo and Mesoscale Convective Vortex (MCV) Experiment are presented. A bow echo formed just east of Saint Louis, Missouri, and produced a continuous straight-line wind damage swath approximately 8 km in width and 50 km in length along with five F0–F1 tornadoes. Careful superposition of the damage survey analysis and Weather Surveillance Radar-1988 Doppler (WSR-88D) data from Saint Charles, Missouri (KLSX), showed that the primary straight-line wind damage swath was not collocated with the bow echo apex as has been suggested in previous studies. Rather, the primary damage swath was found north of the bow apex, collocated with a low-level vortex that formed on the leading edge of the bow echo. Much of the primary damage swath appeared to have been created by the low-level vortex. Moreover, most of the surface straight-line wind damage was generated during the early stages of bow echo morphology prior to when the radar-detected bow echo attributes were best defined. Detailed analysis of the KLSX radar data revealed the genesis of 11 low-level meso-γ-scale vortices within the convective system. Superposition of the damage survey data showed that five of the vortices were tornadic. Careful analysis of the radar data suggests that it may be possible to distinguish between the tornadic and nontornadic vortices. Consistently, the tornadic vortices were longer-lived and stronger at low levels [0–3 km above ground level (AGL)] and rapidly deepened and intensified just prior to tornadogenesis. Similar evolution was not observed with the nontornadic vortices. All of the tornadic vortices formed coincident with or after the genesis time of the rear-inflow jet. These results suggest that the rear-inflow jet may be important for creating tornadic vortices within bow echoes. The detection and warning implications of these results are discussed.


2020 ◽  
Author(s):  
Hongli Li ◽  
Yang Hu ◽  
Zhimin Zhou

<p>During the Meiyu period, floods are prone to occur in the middle and lower reaches of the Yangtze River due to the highly concentrated and heavy rainfall, which caused huge life and economic losses. Based on numerical simulation by assimilating Doppler radar, radiosonde, and surface meteorological observations, the evolution mechanism for the initiation, development and decaying of a Meiyu frontal rainstorm that occurred from 4th to 5th July 2014 is analyzed in this study. Results show that the numerical experiment can well reproduce the temporal variability of heavy precipitation and successfully simulate accumulative precipitation and its evolution over the key rainstorm area. The simulated “rainbelt training” is consistent with observed “echo training” on both spatial structure and temporal evolution. The convective cells in the mesoscale convective belt propagated from southwest to northeast across the key rainstorm area, leading to large accumulative precipitation and rainstorm in this area. There existed convective instability in lower levels above the key rainstorm area, while strong ascending motion developed during period of heavy rainfall. Combined with abundant water vapor supply, the above condition was favorable for the formation and development of heavy rainfall. The Low level jet (LLJ) provided sufficient energy for the rainstorm system, and the low-level convergence intensified, which was an important reason for the maintenance of precipitation system and its eventual intensification to rainstorm. At its mature stage, the rainstorm system demonstrated vertically tilted structure with strong ascending motion in the key rainstorm area, which was favorable for the occurrence of heavy rainfall. In the decaying stage, unstable energy decreased, and the rainstorm no longer had sufficient energy to sustain. The rapid weakening of LLJ resulted in smaller energy supply to the convective system, and the stratification tended to be stable in the middle and lower levels. The ascending motion weakened correspondingly, which made it hard for the convective system to maintain.</p>


2011 ◽  
Vol 139 (8) ◽  
pp. 2367-2385 ◽  
Author(s):  
Hsiao-Wei Lai ◽  
Christopher A. Davis ◽  
Ben Jong-Dao Jou

AbstractThis study examines a subtropical oceanic mesoscale convective vortex (MCV) that occurred from 1800 UTC 4 June to 1200 UTC 6 June 2008 during intensive observing period (IOP) 6 of the Southwest Monsoon Experiment (SoWMEX) and the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). A dissipating mesoscale convective system reorganized within a nearly barotropic vorticity strip, which formed as a southwesterly low-level jet developed to the south of subsiding easterly flow over the southern Taiwan Strait. A cyclonic circulation was revealed on the northern edge of the mesoscale rainband with a horizontal scale of 200 km. An inner subvortex, on a scale of 25–30 km with maximum shear vorticity of 3 × 10−3 s−1, was embedded in the stronger convection. The vortex-relative southerly flow helped create local potential instability favorable for downshear convection enhancement. Strong low-level convergence suggests that stretching occurred within the MCV. Higher θe air, associated with significant potential and conditional instability, and high reflectivity signatures near the vortex center suggest that deep moist convection was responsible for the vortex stretching. Dry rear inflow penetrated into the MCV and suppressed convection in the upshear direction. A mesolow was also roughly observed within the larger vortex. The presence of intense vertical wind shear in the higher troposphere limited the vortex vertical extent to about 6 km.


2017 ◽  
Vol 145 (4) ◽  
pp. 1315-1337 ◽  
Author(s):  
Myung-Sook Park ◽  
Myong-In Lee ◽  
Dongmin Kim ◽  
Michael M. Bell ◽  
Dong-Hyun Cha ◽  
...  

Abstract The effects of land-based convection on the formation of Tropical Storm Mekkhala (2008) off the west coast of the Philippines are investigated using the Weather Research and Forecasting Model with 4-km horizontal grid spacing. Five simulations with Thompson microphysics are utilized to select the control-land experiment that reasonably replicates the observed sea level pressure evolution. To demonstrate the contribution of the land-based convection, sensitivity experiments are performed by changing the land of the northern Philippines to water, and all five of these no-land experiments fail to develop Mekkhala. The Mekkhala tropical depression develops when an intense, well-organized land-based mesoscale convective system moves offshore from Luzon and interacts with an oceanic mesoscale system embedded in a strong monsoon westerly flow. Because of this interaction, a midtropospheric mesoscale convective vortex (MCV) organizes offshore from Luzon, where monsoon convection continues to contribute to low-level vorticity enhancement below the midlevel vortex center. In the no-land experiments, widespread oceanic convection induces a weaker midlevel vortex farther south in a strong vertical wind shear zone and subsequently farther east in a weaker monsoon vortex region. Thus, the monsoon convection–induced low-level vorticity remained separate from the midtropospheric MCV, which finally resulted in a failure of the low-level spinup. This study suggests that land-based convection can play an advantageous role in TC formation by influencing the intensity and the placement of the incipient midtropospheric MCV to be more favorable for TC low-level circulation development.


2006 ◽  
Vol 63 (1) ◽  
pp. 268-287 ◽  
Author(s):  
G. M. Heymsfield ◽  
Joanne Simpson ◽  
J. Halverson ◽  
L. Tian ◽  
E. Ritchie ◽  
...  

Abstract Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse dataset including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite. The authors discuss the storm structure from the larger-scale environment down to the convective scale. Large vertical shear (850–200-hPa shear magnitude range 8–15 m s−1) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5–6-km altitude, and an adjacent intense convective region that comprised a mesoscale convective system (MCS). The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as cell 2 during the period of the observations were extremely intense, with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m s−1. Associated with this MCS were two broad subsidence (warm) regions, both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper-level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. The configuration of the convective updrafts, low-level circulation, and lack of vertical coherence between the upper- and lower-level warming regions likely inhibited intensification of Chantal. This configuration is consistent with modeled vortices in sheared environments, which suggest the strongest convection and rain in the downshear left quadrant of the storm, and subsidence in the upshear right quadrant. The vertical shear profile is, however, different from what was assumed in previous modeling in that the winds are strongest in the lowest levels and the deep tropospheric vertical shear is on the order of 10–12 m s−1.


2019 ◽  
Vol 147 (6) ◽  
pp. 1989-2007 ◽  
Author(s):  
Eigo Tochimoto ◽  
Sho Yokota ◽  
Hiroshi Niino ◽  
Wataru Yanase

Abstract Strong gusty winds in a weak maritime extratropical cyclone (EC) over the Tsushima Strait in the southwestern Sea of Japan capsized several fishing boats on 1 September 2015. A C-band Doppler radar recorded a spiral-shaped reflectivity pattern associated with a convective system and a Doppler velocity pattern of a vortex with a diameter of 30 km [meso-β-scale vortex (MBV)] near the location of the wreck. A high-resolution numerical simulation with horizontal grid interval of 50 m successfully reproduced the spiral-shaped precipitation pattern associated with the MBV and tornado-like strong vortices that had a maximum wind speed exceeding 50 m s−1 and repeatedly developed in the MBV. The simulated MBV had a strong cyclonic circulation comparable to a mesocyclone in a supercell storm. Unlike mesocyclones associated with a supercell storm, however, its vorticity was largest near the surface and decreased monotonically with increasing height. The strong vorticity of the MBV near the surface originated from a horizontal shear line in the EC. The tornado-like vortices developed in a region of strong horizontal shear in the western part of the MBV, suggesting that they were caused by a shear instability.


2009 ◽  
Vol 137 (5) ◽  
pp. 1497-1513 ◽  
Author(s):  
Nolan T. Atkins ◽  
Michael St. Laurent

Abstract This two-part study examines the damaging potential and genesis of low-level, meso-γ-scale mesovortices formed within bow echoes. This was accomplished by analyzing quasi-idealized simulations of the 10 June 2003 Saint Louis bow echo event observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). This bow echo produced both damaging and nondamaging mesovortices. A series of sensitivity simulations were performed to assess the impact of low- and midlevel shear, cold-pool strength, and Coriolis forcing on mesovortex strength. By analyzing the amount of circulation, maximum vertical vorticity, and number of mesovortices produced at the lowest grid level, it was observed that more numerous and stronger mesovortices were formed when the low-level environmental shear nearly balanced the horizontal shear produced by the cold pool. As the magnitude of deeper layer shear increased, the number and strength of mesovortices increased. Larger Coriolis forcing and stronger cold pools also produced stronger mesovortices. Variability of ground-relative wind speeds produced by mesovortices was noted in many of the experiments. It was observed that the strongest ground-relative wind speeds were produced by mesovortices that formed near the descending rear-inflow jet (RIJ). The strongest surface winds were located on the southern periphery of the mesovortex and were created by the superposition of the RIJ and mesovortex flows. Mesovortices formed prior to RIJ genesis or north and south of the RIJ core produced weaker ground-relative wind speeds. The forecast implications of these results are discussed. The genesis of the mesovortices is discussed in Part II.


Sign in / Sign up

Export Citation Format

Share Document