scholarly journals Visibility during Blowing Snow Events over Arctic Sea Ice

2008 ◽  
Vol 23 (4) ◽  
pp. 741-751 ◽  
Author(s):  
Qiang Huang ◽  
John Hanesiak ◽  
Sergiy Savelyev ◽  
Tim Papakyriakou ◽  
Peter A. Taylor

Abstract A field study on visibility during Arctic blowing snow events over sea ice in Franklin Bay, Northwest Territories, Canada, was carried out from mid-January to early April 2004 during the Canadian Arctic Shelf Exchange Study (CASES) 2003–04 expedition. Visibilities at two heights, wind and temperature profiles, plus blowing and drifting snow particle flux at several heights were monitored continually during the study period. Good relations between visibility and wind speed were found in individual events of ground blowing snow with coefficients of determination >0.9. Regression equations relating 1.5-m height visibility to 10-m wind speed can be used for predicting visibility with a mean relative error in the range of 19%–32%. Similar regression functions obtained from the data for observed visibility of less than 1 km could predict visibilities more accurately for more extreme visibility reductions and wind speeds (>9.5 m s−1) with mean relative error ranging from 15% to 26%. For the event of ground blowing snow, a simple power law relationship between wind speed and visibility is sufficient for operational purposes. A poorer relationship was observed in the event of blowing snow with concurrent precipitating snow. A theoretical visibility model developed by Pomeroy and Male fit well with observed visibilities if using a mean radius of 50 μm and an alpha value of 10. The predicted visibility had a mean relative error of 30.5% and root-mean-square error of 1.3 km. The observed visibility at 1.5 m had a strong relation with particle counter readings, with an R2 of 0.92, and was consistent among all events.

2011 ◽  
Vol 52 (57) ◽  
pp. 271-278 ◽  
Author(s):  
Katherine C. Leonard ◽  
Ted Maksym

AbstractSnow distribution is a dominating factor in sea-ice mass balance in the Bellingshausen Sea, Antarctica, through its roles in insulating the ice and contributing to snow-ice production. the wind has long been qualitatively recognized to influence the distribution of snow accumulation on sea ice, but the relative importance of drifting and blowing snow has not been quantified over Antarctic sea ice prior to this study. the presence and magnitude of drifting snow were monitored continuously along with wind speeds at two sites on an ice floe in the Bellingshausen Sea during the October 2007 Sea Ice Mass Balance in the Antarctic (SIMBA) experiment. Contemporaneous precipitation measurements collected on board the RVIB Nathaniel B. Palmer and accumulation measurements by automated ice mass-balance buoys (IMBs) allow us to document the proportion of snowfall that accumulated on level ice surfaces in the presence of high winds and blowing-snow conditions. Accumulation on the sea ice during the experiment averaged <0.01 m w.e. at both IMB sites, during a period when European Centre for Medium-Range Weather Forecasts analyses predicted >0.03 m w.e. of precipitation on the ice floe. Accumulation changes on the ice floe were clearly associated with drifting snow and high winds. Drifting-snow transport during the SIMBA experiment was supply-limited. Using these results to inform a preliminary study using a blowing-snow model, we show that over the entire Southern Ocean approximately half of the precipitation over sea ice could be lost to leads.


2007 ◽  
Vol 46 (4) ◽  
pp. 445-456 ◽  
Author(s):  
Katherine Klink

Abstract Mean monthly wind speed at 70 m above ground level is investigated for 11 sites in Minnesota for the period 1995–2003. Wind speeds at these sites show significant spatial and temporal coherence, with prolonged periods of above- and below-normal values that can persist for as long as 12 months. Monthly variation in wind speed primarily is determined by the north–south pressure gradient, which captures between 22% and 47% of the variability (depending on the site). Regression on wind speed residuals (pressure gradient effects removed) shows that an additional 6%–15% of the variation can be related to the Arctic Oscillation (AO) and Niño-3.4 sea surface temperature (SST) anomalies. Wind speeds showed little correspondence with variation in the Pacific–North American (PNA) circulation index. The effect of the strong El Niño of 1997/98 on the wind speed time series was investigated by recomputing the regression equations with this period excluded. The north–south pressure gradient remains the primary determinant of mean monthly 70-m wind speeds, but with 1997/98 removed the influence of the AO increases at nearly all stations while the importance of the Niño-3.4 SSTs generally decreases. Relationships with the PNA remain small. These results suggest that long-term patterns of low-frequency wind speed (and thus wind power) variability can be estimated using large-scale circulation features as represented by large-scale climatic datasets and by climate-change models.


2021 ◽  
Author(s):  
Xin Yang ◽  
Anne-M Blechschmidt2 ◽  
Kristof Bognar ◽  
Audra McClure–Begley ◽  
Sara Morris ◽  
...  

&lt;p&gt;Within the framework of the International Arctic Systems for Observing the Atmosphere (IASOA), we report a modelling-based study on surface ozone across the Arctic. We use surface ozone from six sites: Summit (Greenland), Pallas (Finland), Barrow (USA), Alert (Canada), Tiksi (Russia), and Villum Research Station (VRS) at Station Nord (North Greenland, Danish Realm), and ozonesonde data from three Canadian sites: Resolute, Eureka, and Alert. Two global chemistry models: a global chemistry transport model (p-TOMCAT) and a global chemistry climate model (UKCA), are used for model-data comparisons. Remotely sensed data of BrO from the GOME-2 satellite instrument at Eureka, Canada are used for model validation.&lt;/p&gt;&lt;p&gt;The observed climatology data show that spring surface ozone at coastal Arctic is heavily depleted, making ozone seasonality at Arctic coastal sites distinctly different from that at inland sites. Model simulations show that surface ozone can be greatly reduced by bromine chemistry. In April, bromine chemistry can cause a net ozone loss (monthly mean) of 10-20 ppbv, with almost half attributable to open-ocean-sourced bromine and the rest to sea-ice-sourced bromine. However, the open-ocean-sourced bromine, via sea spray bromide depletion, cannot by itself produce ozone depletion events (ODEs) (defined as ozone volume mixing ratios VMRs &lt; 10 ppbv). In contrast, sea-ice-sourced bromine, via sea salt aerosol (SSA) production from blowing snow, can produce ODEs even without bromine from sea spray, highlighting the importance of sea ice surface in polar boundary layer chemistry.&lt;/p&gt;&lt;p&gt;Modelled total inorganic bromine (Br&lt;sub&gt;Y&lt;/sub&gt;) over the Arctic sea ice &amp;#160;is sensitive to model configuration, e.g., under the same bromine loading, Br&lt;sub&gt;Y&lt;/sub&gt; in the Arctic spring boundary layer in the p-TOMCAT control run (i.e., with all bromine emissions) can be 2 times that in the UKCA control run. Despite the model differences, both model control runs can successfully reproduce large bromine explosion events (BEEs) and ODEs in polar spring. Model-integrated tropospheric column BrO generally matches GOME-2 tropospheric columns within ~50% in UKCA and a factor of 2 in p-TOMCAT. The success of the models in reproducing both ODEs and BEEs in the Arctic indicates that the relevant parameterizations implemented in the models work reasonably well, which supports the proposed mechanism of SSA production and bromide release on sea ice. Given that sea ice is a large source of SSA and halogens, changes in sea ice type and extent in a warming climate will influence Arctic boundary layer chemistry, including the oxidation of atmospheric elemental mercury. Note that this work dose not necessary rule out other possibilities that may act as a source of reactive bromine from sea ice zone.&lt;/p&gt;


2006 ◽  
Vol 7 (5) ◽  
pp. 984-994 ◽  
Author(s):  
Konosuke Sugiura ◽  
Tetsuo Ohata ◽  
Daqing Yang

Abstract Intercomparison of solid precipitation measurement at Barrow, Alaska, has been carried out to examine the catch characteristics of various precipitation gauges in high-latitude regions with high winds and to evaluate the applicability of the WMO precipitation correction procedures. Five manual precipitation gauges (Canadian Nipher, Hellmann, Russian Tretyakov, U.S. 8-in., and Wyoming gauges) and a double fence intercomparison reference (DFIR) as an international reference standard have been installed. The data collected in the last three winters indicates that the amount of solid precipitation is characteristically low, and the zero-catch frequency of the nonshielded gauges is considerably high, 60%–80% of precipitation occurrences. The zero catch in high-latitude high-wind regions becomes a significant fraction of the total precipitation. At low wind speeds, the catch characteristics of the gauges are roughly similar to the DFIR, although it is noteworthy that the daily catch ratios decreased more rapidly with increasing wind speed compared to the WMO correction equations. The dependency of the daily catch ratios on air temperature was confirmed, and the rapid decrease in the daily catch ratios is due to small snow particles caused by the cold climate. The daily catch ratio of the Wyoming gauge clearly shows wind-induced losses. In addition, the daily catch ratios are considerably scattered under strong wind conditions due to the influence of blowing snow. This result suggests that it is not appropriate to extrapolate the WMO correction equations for the shielded gauges in high-latitude regions for high wind speed of over 6 m s−1.


2018 ◽  
Vol 18 (22) ◽  
pp. 16689-16711 ◽  
Author(s):  
Michael R. Giordano ◽  
Lars E. Kalnajs ◽  
J. Douglas Goetz ◽  
Anita M. Avery ◽  
Erin Katz ◽  
...  

Abstract. A fundamental understanding of the processes that control Antarctic aerosols is necessary in determining the aerosol impacts on climate-relevant processes from Antarctic ice cores to clouds. The first in situ observational online composition measurements by an aerosol mass spectrometer (AMS) of Antarctic aerosols were only recently performed during the Two-Season Ozone Depletion and Interaction with Aerosols Campaign (2ODIAC). 2ODIAC was deployed to sea ice on the Ross Sea near McMurdo Station over two field seasons: austral spring–summer 2014 and winter–spring 2015. The results presented here focus on the overall trends in aerosol composition primarily as functions of air masses and local meteorological conditions. The results suggest that the impact of long-range air mass back trajectories on either the absolute or relative concentrations of the aerosol constituents measured by (and inferred from) an AMS at a coastal location is small relative to the impact of local meteorology. However, when the data are parsed by wind speed, two observations become clear. First, a critical wind speed is required to loft snow from the surface, which, in turn, increases particle counts in all measured size bins. Second, elevated wind speeds showed increased aerosol chloride and sodium. Further inspection of the AMS data shows that the increased chloride concentrations have more of a “fast-vaporizing” nature than chloride measured at low wind speed. Also presented are the Cl:Na ratios of snow samples and aerosol filter samples, as measured by ion chromatography, as well as non-chloride aerosol constituents measured by the AMS. Additionally, submicron aerosol iodine and bromine concentrations as functions of wind speed are also presented. The results presented here suggest that aerosol composition in coastal Antarctica is a strong function of wind speed and that the mechanisms determining aerosol composition are likely linked to blowing snow.


2011 ◽  
Vol 52 (57) ◽  
pp. 215-224 ◽  
Author(s):  
Tim Papakyriakou ◽  
Lisa Miller

AbstractSpringtime measurements of CO2 exchange over seasonal sea ice in the Canadian Arctic Archipelago using eddy covariance show that CO2 was generally released to the atmosphere during the cold (ice surface temperatures less than about –6˚C) early part of the season, but was absorbed from the atmosphere as warming advanced. Hourly maximum efflux and uptake rates approached 1.0 and –3.0 μmol m–2 s–1, respectively. These CO2 flux rates are far greater than previously reported over sea ice and are comparable in magnitude to exchanges observed within other systems (terrestrial and marine). Uptake generally occurred for wind speeds in excess of 6 m s–1 and corresponded to local maxima in temperature at the snow–ice interface and net radiation. Efflux, on the other hand, occurred under weaker wind speeds and periods of local minima in temperature and net radiation. the wind speeds associated with uptake are above a critical threshold for drifting and blowing snow, suggesting that ventilation of the snowpack and turbulent exchange with the brine-wetted grains are an important part of the process. Both the uptake and release fluxes may be at least partially driven by the temperature sensitivity of the carbonate system speciation in the brine-wetted snow base and upper sea ice. the period of maximum springtime CO2 uptake occurred as the sea-ice permeability increased, passing a critical threshold allowing vertical brine movement throughout the sea-ice sheet. At this point, atmospheric CO2 would have been available to the under-ice sea-water carbonate system, with ramifications for carbon cycling in sea-ice-dominated polar waters.


2019 ◽  
Author(s):  
Xiaoyong Yu ◽  
Annette Rinke ◽  
Wolfgang Dorn ◽  
Gunnar Spreen ◽  
Christof Lüpkes ◽  
...  

Abstract. We examine the simulated Arctic sea-ice drift speed for the period 2003–2014 in the coupled Arctic regional climate model HIRHAM-NAOSIM 2.0. In particular, we evaluate the dependency of the drift speed on the near-surface wind speed and sea-ice conditions. Considering the seasonal cycle of Arctic basin averaged drift speed, the model reproduces the summer-autumn drift speed well, but significantly overestimates the winter-spring drift speed, compared to satellite-derived observations. Also, the model does not capture the observed seasonal phase lag between drift and wind speed, but the simulated drift speed is more in phase with near-surface wind. The model calculates a realistic negative relationship between drift speed and ice thickness and between drift speed and ice concentration during summer-autumn when concentration is relatively low, but the correlation is weaker than observed. A daily grid-scale diagnostic indicates that the model reproduces the observed positive relationship between drift and wind speed. The strongest impact of wind changes on drift speed occurs for high and moderate wind speeds, with a low impact for calm conditions. The correlation under low-wind conditions is overestimated in the simulations, compared to observation/reanalysis. A sensitivity experiment demonstrates the significant effects of sea-ice form drag included by an improved parameterization of the transfer coefficients for momentum and heat over sea ice. However, this does not improve the agreement of the modelled drift speed/wind speed ratio with observations based on reanalysis for wind and remote sensing for sea ice drift. An improvement might be possible, among others, by tuning the open parameters of the parameterization in future.


2016 ◽  
Author(s):  
Ethan R. Dale ◽  
Adrian J. McDonald ◽  
Jack H.J. Coggins ◽  
Wolfgang Rack

Abstract. Despite warming trends in global temperatures, sea ice extent in the Southern Hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce a vast amount of the sea ice in the region. We investigate the impacts of strong wind events on the Ross Sea Polynyas and its sea ice concentration and possible consequences on sea ice production. We utilise Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperatures. We compared these with surface winds and temperatures from automatic weather stations (AWS) of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the austral winter period defined as 1st April to 1st November in this study. Daily data were used to classified into characteristic regimes based on the percentiles of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea Polynya (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analysing sea ice motion vectors derived from SSM/I and SSMIS brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wind event. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to recreate these correlations using co-located ERA-Interim wind speeds. However when only days of a certain percentile based wind speed classification were used, the cross correlation functions produced by ERA-Interim wind speeds differed significantly from those produced using AWS wind speeds. The rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. This increase occurs on a more gradual time scale than the average persistence of a strong wind event and the resulting sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes. In the vicinity of Ross Island, ERA-Interim underestimates wind speeds by a factor of 1.7, which results in a significant misrepresentation of the impact of winds on polynya processes.


2007 ◽  
Vol preprint (2008) ◽  
pp. 1
Author(s):  
Qiang Huang ◽  
John Hanesiak ◽  
Sergiy Savelyev ◽  
Tim Papakyriakou ◽  
Peter A. Taylor

2019 ◽  
Author(s):  
Markus M. Frey ◽  
Sarah J. Norris ◽  
Ian M. Brooks ◽  
Philip S. Anderson ◽  
Kouichi Nishimura ◽  
...  

Abstract. Two consecutive cruises in the Weddell Sea, Antarctica, in winter 2013 provided the first direct observations of sea salt aerosol (SSA) production from blowing snow above sea ice, thereby validating a model hypothesis to account for winter time SSA maxima in polar regions not explained otherwise. Blowing or drifting snow always lead to increases in SSA during and after storms. Observed aerosol gradients suggest that net production of SSA takes place near the top of the blowing or drifting snow layer. The observed relative increase of SSA concentrations with wind speed suggests that on average the corresponding aerosol mass flux during storms was equal or larger above sea ice than above the open ocean, demonstrating the importance of the blowing snow source for SSA in winter and early spring. For the first time it is shown that snow on sea ice is depleted in sulphate relative to sodium with respect to sea water. Similar depletion observed in the aerosol suggests that most sea salt originated from snow on sea ice and not the open ocean or leads, e.g. on average 93 % during the 8 June and 12 August 2013 period. A mass budget calculation shows that sublimation of snow even with low salinity (


Sign in / Sign up

Export Citation Format

Share Document