scholarly journals The Influence of Air Temperature Inversions on Snowmelt and Glacier Mass Balance Simulations, Ammassalik Island, Southeast Greenland

2010 ◽  
Vol 49 (1) ◽  
pp. 47-67 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston

Abstract In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow evolution modeling system (SnowModel) was used to simulate 8 yr (1998/99–2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution submodel used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates because of the potential of inversion breakup. Field observations showed inversions to extend from sea level to approximately 300 m MSL, and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower-elevation areas and cooler higher-elevation areas than without inversion routines because of the use of cold sea-breeze-based temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1–3 weeks later snowmelt in the higher-elevation areas of the simulation domain. Averaged mean annual modeled surface mass balance for all glaciers (mainly located above the inversion layer) was −720 ± 620 mm w.eq. yr−1 (w.eq. is water equivalent) for inversion simulations, and −880 ± 620 mm w.eq. yr−1 without the inversion routines, a difference of 160 mm w.eq. yr−1. The annual glacier loss for the two simulations was 50.7 × 106 and 64.4 × 106 m3 yr−1 for all glaciers—a difference of ∼21%. The average equilibrium line altitude (ELA) for all glaciers in the simulation domain was located at 875 and 900 m MSL for simulations with or without inversion routines, respectively.

1995 ◽  
Vol 21 ◽  
pp. 399-405 ◽  
Author(s):  
Martin Hoelzle ◽  
Wilfried Haeberli

Models are developed to simulate changes in permafrost distribution and glacier size in mountain areas. The models exclusively consider equilibrium conditions. As a first application, the simplified assumption is used that one single parameter (mean annual air temperature) is changing. Permafrost distribution patterns are estimated for a test area (Corvatsch-Furtschellas) and for the whole Upper Engadin region (eastern Swiss Alps) using a relation between permafrost occurrence as indicated by BTS (bottom temperature of the winter snow cover) measurements, potential direct solar radiation and mean annual air temperature. Glacier sizes were assessed in the same region with data from the World Glacier Inventory database. The simulations for the glaciers are based on the assumption that an increase or decrease in equilibrium-line altitude (ELA) would lead to a mass-balance change. Model calculations for potential future changes in ELA and mass balance include estimated developments of area, length and volume. Mass changes were also calculated for the time period 1850–1973 on the basis of measured cumulative length change, glacier length and estimated ablation at the glacier terminus. For the time period since 1850, permafrost became inactive or disappeared in about 15% of the area originally underlain by permafrost in the whole Upper Engadin region, and mean annual glacier mass balance was calculated as −0.26 to −0.46 m w.e.a−1 for the larger glaciers in the same area. The estimated loss in glacier volume since 1850 lies between 55% and 66% of the original value. With an assumed increase in mean annual air temperature of +3°C, the area of supposed permafrost occurrence would possibly be reduced by about 65% with respect to present-day conditions and only three glaciers would continue to partially exist.


2018 ◽  
Vol 12 (4) ◽  
pp. 1211-1232 ◽  
Author(s):  
Ulrike Falk ◽  
Damián A. López ◽  
Adrián Silva-Busso

Abstract. The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K(100m)-1) and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the wintertime over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as 5 years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift in the difference between simulated mass balance and mass balance measurements can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in meltwater input to the coastal waters, specific glacier mass balance and the equilibrium line altitude (ELA). The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is glacierized to 93.8 %. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q¯=25±6hm3yr-1 with the standard deviation of 8 % annotating the high interannual variability. The average ELA calculated from our own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to 260±20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid-1980s with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.


2021 ◽  
pp. 1-55
Author(s):  
Meilin Zhu ◽  
Lonnie G. Thompson ◽  
Huabiao Zhao ◽  
Tandong Yao ◽  
Wei Yang ◽  
...  

AbstractGlacier changes on the Tibetan Plateau (TP) have been spatially heterogeneous in recent decades. The understanding of glacier mass changes in western Tibet, a transitional area between the monsoon-dominated region and the westerlies-dominated region, is still incomplete. For this study, we used an energy-mass balance model to reconstruct annual mass balances from October 1967 to September 2019 to explore the effects of local climate and large-scale atmospheric circulation on glacier mass changes in western Tibet. The results showed Xiao Anglong Glacier is close to a balanced condition, with an average value of -53±185 mm w.e. a-1 for 1968-2019. The interannual mass balance variability during 1968-2019 was primary driven by ablation-season precipitation, which determined changes in the snow accumulation and strongly influenced melt processes. The interannual mass balance variability during 1968-2019 was less affected by ablation-season air temperature, which only weakly affected snowfall and melt energy. Further analysis suggests that the southward (or northward) shift of the westerlies caused low (or high) ablation-season precipitation, and therefore low (or high) annual mass balance for glaciers in western Tibet. In addition, the average mass balance for Xiao Anglong Glacier was 83±185, -210±185, and -10±185 mm w.e. a-1 for 1968-1990, 1991-2012, and 2013-2019, respectively. These mass changes were associated with the variations in precipitation and air temperature during the ablation season on interdecadal time scales.


2013 ◽  
Vol 7 (1) ◽  
pp. 709-741 ◽  
Author(s):  
T. Sauter ◽  
M. Möller ◽  
R. Finkelnburg ◽  
M. Grabiec ◽  
D. Scherer ◽  
...  

Abstract. The redistribution of snow by drifting and blowing snow frequently leads to an inhomogeneous snow mass distribution on larger ice caps. Together with the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer, these processes affect the glacier surface mass balance. This study provides a first quantification of snowdrift and sublimation of blowing and drifting snow on Vestfonna ice cap (Svalbard) by using the specifically designed "snow2blow" snowdrift model. The model is forced by atmospheric fields from the Weather Research and Forecasting model and resolves processes on a spatial resolution of 250 m. Comparison with radio-echo soudings and snow-pit measurements show that important local scale processes are resolved by the model and the overall snow accumulation pattern is reproduced. The findings indicate that there is a significant redistribution of snow mass from the interior of the ice cap to the surrounding areas and ice slopes. Drifting snow sublimation of suspended snow is found to be stronger during winter. It is concluded that both processes are strong enough to have a significant impact on glacier mass balance.


1995 ◽  
Vol 21 ◽  
pp. 399-405 ◽  
Author(s):  
Martin Hoelzle ◽  
Wilfried Haeberli

Models are developed to simulate changes in permafrost distribution and glacier size in mountain areas. The models exclusively consider equilibrium conditions. As a first application, the simplified assumption is used that one single parameter (mean annual air temperature) is changing.Permafrost distribution patterns are estimated for a test area (Corvatsch-Furtschellas) and for the whole Upper Engadin region (eastern Swiss Alps) using a relation between permafrost occurrence as indicated by BTS (bottom temperature of the winter snow cover) measurements, potential direct solar radiation and mean annual air temperature. Glacier sizes were assessed in the same region with data from the World Glacier Inventory database. The simulations for the glaciers are based on the assumption that an increase or decrease in equilibrium-line altitude (ELA) would lead to a mass-balance change. Model calculations for potential future changes in ELA and mass balance include estimated developments of area, length and volume. Mass changes were also calculated for the time period 1850–1973 on the basis of measured cumulative length change, glacier length and estimated ablation at the glacier terminus.For the time period since 1850, permafrost became inactive or disappeared in about 15% of the area originally underlain by permafrost in the whole Upper Engadin region, and mean annual glacier mass balance was calculated as −0.26 to −0.46 m w.e.a−1 for the larger glaciers in the same area. The estimated loss in glacier volume since 1850 lies between 55% and 66% of the original value. With an assumed increase in mean annual air temperature of +3°C, the area of supposed permafrost occurrence would possibly be reduced by about 65% with respect to present-day conditions and only three glaciers would continue to partially exist.


2006 ◽  
Vol 7 (4) ◽  
pp. 808-824 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston ◽  
Bent Hasholt ◽  
Niels T. Knudsen

Abstract A physically based snow-evolution modeling system (SnowModel) that includes four submodels—the Micrometeorological Model (MicroMet), EnBal, SnowPack, and SnowTran-3D—was used to simulate five full-year evolutions of snow accumulation, distribution, sublimation, and surface melt on the Mittivakkat Glacier, in southeast Greenland. Model modifications were implemented and used 1) to adjust underestimated observed meteorological station solid precipitation until the model matched the observed Mittivakkat Glacier winter mass balance, and 2) to simulate glacier-ice melt after the winter snow accumulation had ablated. Meteorological observations from two meteorological stations were used as model inputs, and glaciological mass balance observations were used for model calibration and testing of solid precipitation observations. The modeled end-of-winter snow-water equivalent (w.eq.) accumulation increased with elevation from 200 to 700 m above sea level (ASL) in response to both elevation and topographic influences, and the simulated end-of-summer location of the glacier equilibrium line altitude was confirmed by glaciological observations and digital images. The modeled test-period-averaged annual mass balance was 150 mm w.eq. yr−1, or ∼15%, less than the observed. Approximately 12% of the precipitation was returned to the atmosphere by sublimation. Glacier-averaged mean annual modeled surface melt ranged from 1272 to 2221 mm w.eq. yr−1, of which snowmelt contributed from 610 to 1040 mm w.eq. yr−1. The surface-melt period started between mid-May and the beginning of June, and lasted until mid-September; there were as many as 120 melt days at the glacier terminus. The model simulated a Mittivakkat Glacier recession averaging −616 mm w.eq. yr−1, almost equal to the observed −600 mm w.eq. yr−1.


2013 ◽  
Vol 7 (4) ◽  
pp. 1287-1301 ◽  
Author(s):  
T. Sauter ◽  
M. Möller ◽  
R. Finkelnburg ◽  
M. Grabiec ◽  
D. Scherer ◽  
...  

Abstract. The redistribution of snow by drifting and blowing snow frequently leads to an inhomogeneous snow mass distribution on larger ice caps. Together with the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer, these processes affect the glacier surface mass balance. This study provides a first quantification of snowdrift and sublimation of blowing and drifting snow on the Vestfonna ice cap (Svalbard) by using the specifically designed snow2blow snowdrift model. The model is forced by atmospheric fields from the Polar Weather Research and Forecasting model and resolves processes on a spatial resolution of 250 m. The model is applied to the Vestfonna ice cap for the accumulation period 2008/2009. Comparison with radio-echo soundings and snow-pit measurements show that important local-scale processes are resolved by the model and the overall snow accumulation pattern is reproduced. The findings indicate that there is a significant redistribution of snow mass from the interior of the ice cap to the surrounding areas and ice slopes. Drifting snow sublimation of suspended snow is found to be stronger during spring. It is concluded that the redistribution process is strong enough to have a significant impact on glacier mass balance.


2014 ◽  
Vol 60 (223) ◽  
pp. 867-878 ◽  
Author(s):  
Delphine Six ◽  
Christian Vincent

AbstractAssessment of the sensitivity of surface mass balance and equilibrium-line altitude (ELA) to climate change is crucial for simulating the future evolution of glaciers. Such an assessment has been carried out using an extensive dataset comprising numerous measurements of snow accumulation and snow and ice ablation made on four French glaciers over the past 16 years. Winter mass balance shows a complicated pattern with respect to altitude, with no clear linear relationship. Although the ratios of winter mass balance to valley precipitation differ considerably from site to site, they are relatively constant over time. Relationships between snow/ice ablation and temperature are stable, with no link with altitude. The mean snow and ice positive degree-day (PDD) factors are 0.003 and 0.0061 m w.e. °C−1 d−1. This analysis shows that, at a given site, ablation depends mainly on the amount of snow precipitation and on cumulative PDDs. The sensitivity of annual ablation to temperature change increases almost linearly from 0.25 m w.e. °C−1 at 3500 m to 1.55 m w.e. °C−1 at 1650 m. ELA sensitivity to temperature change was found to range from 50 to 85 m °C−1.


1997 ◽  
Vol 24 ◽  
pp. 186-190 ◽  
Author(s):  
John Woodward ◽  
Martin Sharp ◽  
Anthony Arendt

The formation of superimposed ice at the surface of high-Arctic glaciers is an important control on glacier mass balance, but one which is usually modelled in only a schematic fashion. A method is developed to predict the relationship between the thickness of superimposed ice formed and the mean annual air temperature (which approximates the ice temperature at 14 m depth). This relationship is used to investigate the dependence of the proportion of snowpack water equivalent which forms superimposed ice on changes in mean annual temperature and patterns of snow accumulation. Increased temperatures are likely to reduce the extent of the zone of superimposed-ice accumulation and the thickness of superimposed ice formed. This will have a negative effect on glacier mass balance. This is true even if warming occurs only in the winter months, since near-surface ice temperatures will respond to such warming. For John Evans Glacier, Ellesmere Island, Nunavut, Canada (79°40’ N, 74°00’ W), a 1°C rise in mean annual air temperature due solely to winter warming is predicted to reduce the specific mass balance of the glacier by 0.008 m a–1 as a result of decreased superimposed-ice formation. Although such a response is small in comparison to the changes which might result from summer warming, it is nonetheless significant given the very low specific mass balance of many high-Arctic glaciers.


1997 ◽  
Vol 24 ◽  
pp. 186-190 ◽  
Author(s):  
John Woodward ◽  
Martin Sharp ◽  
Anthony Arendt

The formation of superimposed ice at the surface of high-Arctic glaciers is an important control on glacier mass balance, but one which is usually modelled in only a schematic fashion. A method is developed to predict the relationship between the thickness of superimposed ice formed and the mean annual air temperature (which approximates the ice temperature at 14 m depth). This relationship is used to investigate the dependence of the proportion of snowpack water equivalent which forms superimposed ice on changes in mean annual temperature and patterns of snow accumulation.Increased temperatures are likely to reduce the extent of the zone of superimposed-ice accumulation and the thickness of superimposed ice formed. This will have a negative effect on glacier mass balance. This is true even if warming occurs only in the winter months, since near-surface ice temperatures will respond to such warming. For John Evans Glacier, Ellesmere Island, Nunavut, Canada (79°40’ N, 74°00’ W), a 1°C rise in mean annual air temperature due solely to winter warming is predicted to reduce the specific mass balance of the glacier by 0.008 m a–1 as a result of decreased superimposed-ice formation. Although such a response is small in comparison to the changes which might result from summer warming, it is nonetheless significant given the very low specific mass balance of many high-Arctic glaciers.


Sign in / Sign up

Export Citation Format

Share Document