scholarly journals Influence of atmospheric circulation on glacier mass balance in western Tibet: an analysis based on observations and modeling

2021 ◽  
pp. 1-55
Author(s):  
Meilin Zhu ◽  
Lonnie G. Thompson ◽  
Huabiao Zhao ◽  
Tandong Yao ◽  
Wei Yang ◽  
...  

AbstractGlacier changes on the Tibetan Plateau (TP) have been spatially heterogeneous in recent decades. The understanding of glacier mass changes in western Tibet, a transitional area between the monsoon-dominated region and the westerlies-dominated region, is still incomplete. For this study, we used an energy-mass balance model to reconstruct annual mass balances from October 1967 to September 2019 to explore the effects of local climate and large-scale atmospheric circulation on glacier mass changes in western Tibet. The results showed Xiao Anglong Glacier is close to a balanced condition, with an average value of -53±185 mm w.e. a-1 for 1968-2019. The interannual mass balance variability during 1968-2019 was primary driven by ablation-season precipitation, which determined changes in the snow accumulation and strongly influenced melt processes. The interannual mass balance variability during 1968-2019 was less affected by ablation-season air temperature, which only weakly affected snowfall and melt energy. Further analysis suggests that the southward (or northward) shift of the westerlies caused low (or high) ablation-season precipitation, and therefore low (or high) annual mass balance for glaciers in western Tibet. In addition, the average mass balance for Xiao Anglong Glacier was 83±185, -210±185, and -10±185 mm w.e. a-1 for 1968-1990, 1991-2012, and 2013-2019, respectively. These mass changes were associated with the variations in precipitation and air temperature during the ablation season on interdecadal time scales.

2016 ◽  
Vol 29 (24) ◽  
pp. 8915-8929 ◽  
Author(s):  
John Erich Christian ◽  
Nicholas Siler ◽  
Michelle Koutnik ◽  
Gerard Roe

Abstract Glacier mass balance provides a direct indicator of a glacier’s relationship with local climate, but internally generated variability in atmospheric circulation adds a significant degree of noise to mass-balance time series, making it difficult to correctly identify and interpret trends. This study applies “dynamical adjustment” to seasonal mass-balance records to identify and remove the component of variance in these time series that is associated with large-scale circulation fluctuations (dynamical adjustment refers here to a statistical method and not a glacier’s dynamical response to climate). Mass-balance records are investigated for three glaciers: Wolverine and Gulkana in Alaska and South Cascade in Washington. North Pacific sea level pressure and sea surface temperature fields perform comparably as predictors, each explaining 50%–60% of variance in winter balance and 25%–35% in summer balance for South Cascade and Wolverine Glaciers. Gulkana Glacier, located farther inland, is less closely linked to North Pacific climate variability, with the predictors explaining roughly 30% of variance in winter and summer balance. To investigate the degree to which this variability affects trends, adjusted mass-balance time series are compared to those in the raw data, with common results for all three glaciers; winter balance trends are not significant initially and do not gain robust significance after adjustment despite the large amount of circulation-related variability. However, the raw summer balance data have statistically significant negative trends that remain after dynamical adjustment. This indicates that these trends of increasing ablation in recent decades are not due to circulation anomalies and are consistent with anthropogenic warming.


2017 ◽  
Vol 63 (240) ◽  
pp. 618-628 ◽  
Author(s):  
MARKUS ENGELHARDT ◽  
AL. RAMANATHAN ◽  
TRUDE EIDHAMMER ◽  
PANKAJ KUMAR ◽  
OSKAR LANDGREN ◽  
...  

ABSTRACTGlacier mass balance and runoff are simulated from 1955 to 2014 for the catchment (46% glacier cover) containing Chhota Shigri Glacier (Western Himalaya) using gridded data from three regional climate models: (1) the Rossby Centre regional atmospheric climate model v.4 (RCA4); (2) the REgional atmosphere MOdel (REMO); and (3) the Weather Research and Forecasting Model (WRF). The input data are downscaled to the simulation grid (300 m) and calibrated with point measurements of temperature and precipitation. Additional input is daily potential global radiation calculated using a DEM at a resolution of 30 m. The mass-balance model calculates daily snow accumulation, melt and runoff. The model parameters are calibrated with available mass-balance measurements and results are validated with geodetic measurements, other mass-balance model results and run-off measurements. Simulated annual mass balances slightly decreased from −0.3 m w.e. a−1 (1955–99) to −0.6 m w.e. a−1 for 2000–14. For the same periods, mean runoff increased from 2.0 m3 s−1 (1955–99) to 2.4 m3 s−1 (2000–14) with glacier melt contributing about one-third to the runoff. Monthly runoff increases are greatest in July, due to both increased snow and glacier melt, whereas slightly decreased snowmelt in August and September was more than compensated by increased glacier melt.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 426
Author(s):  
Anselm Arndt ◽  
Dieter Scherer ◽  
Christoph Schneider

The COupled Snowpack and Ice surface energy and mass balance model in PYthon (COSIPY) was employed to investigate the relationship between the variability and sensitivity of the mass balance record of the Halji glacier, in the Himalayas, north-western Nepal, over a 40 year period since October 1981 to atmospheric drivers. COSIPY was forced with the atmospheric reanalysis dataset ERA5-Land that has been statistically downscaled to the location of an automatic weather station at the Halji glacier. Glacier mass balance simulations with air temperature and precipitation perturbations were executed and teleconnections investigated. For the mass-balance years 1982 to 2019, a mean annual glacier-wide climatic mass balance of −0.48 meters water equivalent per year (m w.e. a−1) with large interannual variability (standard deviation 0.71 m w.e. a−1) was simulated. This variability is dominated by temperature and precipitation patterns. The Halji glacier is mostly sensitive to summer temperature and monsoon-related precipitation perturbations, which is reflected in a strong correlation with albedo. According to the simulations, the climate sensitivity with respect to either positive or negative air temperature and precipitation changes is nonlinear: A mean temperature increase (decrease) of 1 K would result in a change of the glacier-wide climatic mass balance of −1.43 m w.e. a−1 (0.99m w.e. a−1) while a precipitation increase (decrease) of 10% would cause a change of 0.45m w.e. a−1 (−0.59m w.e. a−1). Out of 22 circulation and monsoon indexes, only the Webster and Yang Monsoon index and Polar/Eurasia index provide significant correlations with the glacier-wide climatic mass balance. Based on the strong dependency of the climatic mass balance from summer season conditions, we conclude that the snow–albedo feedback in summer is crucial for the Halji glacier. This finding is also reflected in the correlation of albedo with the Webster and Yang Monsoon index.


1984 ◽  
Vol 30 (105) ◽  
pp. 188-198 ◽  
Author(s):  
Brent Yarnal

AbstractThe relationship between synoptic-scale atmospheric circulation and glacier mass balance in the Cordillera of south-western Canada is investigated. Objective synoptic typing techniques are applied to glaciometeorological data from Peyto Glacier, Alberta, and Sentinel Glacier, British Columbia, and to climatological data from nearby weather stations. Two scales of 500 mbar synoptic weather maps are analyzed and compared. One is smaller with high-wavenumber patterns, the other is larger with more general patterns.The results demonstrate that the mass balance of Peyto and Sentinel Glaciers are related to the 500 mbar patterns. Synoptic types with cyclonic curvature favor glacier accumulation, while anticyclonic types inhibit build-up of the regional snow-pack. Ablation is suppressed by synoptic types associated with cloudy days and/or low temperatures, and is enhanced by types associated with warm, sunny days. Furthermore, findings suggest that both the accumulation and ablation of Sentinel Glacier are controlled by small-scale, high-wavenumber synoptic patterns. Conversely, Peyto Glacier accumulation is more closely associated with large-scale patterns, suggesting that high-frequency mid-tropospheric oscillations embedded within the slow-moving baroclinic zones associated with long-wave disturbances may be dampened by the rough topography of the Canadian Cordillera. Ablation is predicted poorly by both scales at Peyto.


2000 ◽  
Vol 31 ◽  
pp. 159-163 ◽  
Author(s):  
Koji Fujita ◽  
Yutaka Ageta ◽  
Pu Jianchen ◽  
Yao Tandong

AbstractData on the mass balance of Xiao Dongkemadi glacier in the Tanggula mountains, central Tibetan Plateau, were obtained over 5 5 years from 1989 to 1995. These are the first continuous mass-balance data for a continental-type glacier on the Tibetan Plateau, where the glacier accumulates during the summer monsoon (summer-accumulation-type glacier). Mass-balance vs altitude profiles were steeper in the negative than in the positive mass-balance years. This is considered to have resulted from the effect of summer accumulation. The annual mass balance is compared with air temperature, precipitation, and black-body temperature in the area including the glacier, which is calculated from infrared radiation observations by theJapanese Geostationary Meteorological Satellite. It was found that the interannual variation in the glacier mass balance was not closely related to maximum monthly mean air temperature, while it did have a relatively good correlation with maximum monthly mean black-body temperature.


2010 ◽  
Vol 49 (1) ◽  
pp. 47-67 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston

Abstract In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow evolution modeling system (SnowModel) was used to simulate 8 yr (1998/99–2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution submodel used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates because of the potential of inversion breakup. Field observations showed inversions to extend from sea level to approximately 300 m MSL, and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower-elevation areas and cooler higher-elevation areas than without inversion routines because of the use of cold sea-breeze-based temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1–3 weeks later snowmelt in the higher-elevation areas of the simulation domain. Averaged mean annual modeled surface mass balance for all glaciers (mainly located above the inversion layer) was −720 ± 620 mm w.eq. yr−1 (w.eq. is water equivalent) for inversion simulations, and −880 ± 620 mm w.eq. yr−1 without the inversion routines, a difference of 160 mm w.eq. yr−1. The annual glacier loss for the two simulations was 50.7 × 106 and 64.4 × 106 m3 yr−1 for all glaciers—a difference of ∼21%. The average equilibrium line altitude (ELA) for all glaciers in the simulation domain was located at 875 and 900 m MSL for simulations with or without inversion routines, respectively.


2020 ◽  
Author(s):  
Johannes Landmann ◽  
Christophe Ogier ◽  
Matthias Huss ◽  
Daniel Farinotti

<p>With the widespread retreat of glaciers, concerns emerge for the availability of water resources. These concerns are largest for future dry spells, when runoff from other sources is low. In this context, mass balance estimates for time horizons from days to weeks might help to better manage water resources in alpine regions. Here, we obtain such estimates from a combined modelling and data assimilation approach. Starting with three glaciers with detailed monitoring in Switzerland, we extrapolate our signal to other unmeasured glaciers in the country.</p><p>For the mass balance modeling, an ensemble of four melt models is tuned to match semi-annual in-situ observations from the Glacier Monitoring Switzerland (GLAMOS) program. With this ensemble, we then infer mass balance for the observed glaciers. Three of the glaciers (Rhonegletscher, Findelgletscher and Glacier de la Plaine Morte) were equipped with on-ice cameras between mid-June and early October 2019. The cameras transmitted 352 daily point mass balance observations which we assimilate into our model results by employing a particle filter.</p><p>To transfer the mass balance information of the three well-observed glaciers to other glaciers in Switzerland, we make use of the strong spatial correlation of cumulative melt. In a workflow here termed “percentile extrapolation method”, first, all glaciers without direct mass balance measurements are calibrated based on geodetic mass balances covering the 1980-2010 period. To reduce the large uncertainty in calibration on geodetic mass changes, we first predict average mass balance model parameters for each glacier with a random forest regressor. Then, we tune these parameters to match the geodetic mass balance in a least squares minimization. As soon as a mass balance climatology for the past has been calculated with this calibration, we determine with which percentiles of this climatology the current year’s mass balance ensemble estimate overlaps at the well-observed glaciers. These percentiles are then extrapolated in space using inverse distance weighting and they are applied to the climatology of unmeasured glaciers. The procedure yields a mass balance estimate at every single day of a year for every Swiss glacier taking into account specific glacier characteristics.</p><p>We compare the assimilated camera mass balances with interpolated measurements from the GLAMOS program. First results indicate that for the annual mass balance, the camera data lower the mean absolute error to 0.19 m water equivalent (w.e.), from 0.36 m w.e for a model prediction without data assimilation. The standard deviation of the prediction ensemble is reduced by 0.37 m w.e. on average. A cross-validation using percentile extrapolation between the glaciers equipped with a camera shows that annual mass balance can be predicted within 0.27 m w.e.. The summer (May to September) melt of other glaciers in the GLAMOS program can be predicted with an absolute error of 0.07m w.e. (model: 0.27 m w.e). Our results indicate that the continuous monitoring of a few selected sites has the potential of strongly improving daily near real-time mass balance estimates at the regional scale.</p>


1997 ◽  
Vol 24 ◽  
pp. 186-190 ◽  
Author(s):  
John Woodward ◽  
Martin Sharp ◽  
Anthony Arendt

The formation of superimposed ice at the surface of high-Arctic glaciers is an important control on glacier mass balance, but one which is usually modelled in only a schematic fashion. A method is developed to predict the relationship between the thickness of superimposed ice formed and the mean annual air temperature (which approximates the ice temperature at 14 m depth). This relationship is used to investigate the dependence of the proportion of snowpack water equivalent which forms superimposed ice on changes in mean annual temperature and patterns of snow accumulation. Increased temperatures are likely to reduce the extent of the zone of superimposed-ice accumulation and the thickness of superimposed ice formed. This will have a negative effect on glacier mass balance. This is true even if warming occurs only in the winter months, since near-surface ice temperatures will respond to such warming. For John Evans Glacier, Ellesmere Island, Nunavut, Canada (79°40’ N, 74°00’ W), a 1°C rise in mean annual air temperature due solely to winter warming is predicted to reduce the specific mass balance of the glacier by 0.008 m a–1 as a result of decreased superimposed-ice formation. Although such a response is small in comparison to the changes which might result from summer warming, it is nonetheless significant given the very low specific mass balance of many high-Arctic glaciers.


1997 ◽  
Vol 24 ◽  
pp. 186-190 ◽  
Author(s):  
John Woodward ◽  
Martin Sharp ◽  
Anthony Arendt

The formation of superimposed ice at the surface of high-Arctic glaciers is an important control on glacier mass balance, but one which is usually modelled in only a schematic fashion. A method is developed to predict the relationship between the thickness of superimposed ice formed and the mean annual air temperature (which approximates the ice temperature at 14 m depth). This relationship is used to investigate the dependence of the proportion of snowpack water equivalent which forms superimposed ice on changes in mean annual temperature and patterns of snow accumulation.Increased temperatures are likely to reduce the extent of the zone of superimposed-ice accumulation and the thickness of superimposed ice formed. This will have a negative effect on glacier mass balance. This is true even if warming occurs only in the winter months, since near-surface ice temperatures will respond to such warming. For John Evans Glacier, Ellesmere Island, Nunavut, Canada (79°40’ N, 74°00’ W), a 1°C rise in mean annual air temperature due solely to winter warming is predicted to reduce the specific mass balance of the glacier by 0.008 m a–1 as a result of decreased superimposed-ice formation. Although such a response is small in comparison to the changes which might result from summer warming, it is nonetheless significant given the very low specific mass balance of many high-Arctic glaciers.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yanjun Che ◽  
Mingjun Zhang ◽  
Zhongqin Li ◽  
Yanqiang Wei ◽  
Zhuotong Nan ◽  
...  

Abstract Energy exchanges between atmosphere and glacier surface control the net energy available for snow and ice melt. Based on the meteorological records in Urumqi River Glacier No.1 (URGN1) in the Chinese Tien Shan during the period of 2012–2015, an energy-mass balance model was run to assess the sensitivity of glacier mass balance to air temperature (T), precipitation (P), incoming shortwave radiation (Sin), relative humidity (RH), and wind speed (u) in the URGN1, respectively. The results showed that the glacier melting was mainly controlled by the net shortwave radiation. The glacier mass balance was very sensitivity to albedo for snow and the time scale determining how long the snow albedo approaches the albedo for firn after a snowfall. The net annual mass balance of URGN1 was decreased by 0.44 m w.e. when increased by 1 K in air temperature, while it was increased 0.30 m w.e. when decreased by 1 K. The net total mass balance increased by 0.55 m w.e. when increased precipitation by 10%, while it was decreased by 0.61 m w.e. when decreased precipitation by 10%. We also found that the change in glacier mass balance was non-linear when increased or decreased input condition of climate change. The sensitivity of mass balance to increase in Sin, u, and RH were at −0.015 m w.e.%−1, −0.020 m w.e.%−1, and −0.018 m w.e.%−1, respectively, while they were at 0.012 m w.e.%−1, 0.027 m w.e.%−1, and 0.017 m w.e.%−1 when decreasing in those conditions, respectively. In addition, the simulations of coupled perturbation for temperature and precipitation indicated that the precipitation needed to increase by 23% could justly compensate to the additional mass loss due to increase by 1 K in air temperature. We also found that the sensitivities of glacier mass balance in response to climate change were different in different mountain ranges, which were mainly resulted from the discrepancies in the ratio of snowfall to precipitation during the ablation season, the amount of melt energy during the ablation season, and precipitation seasonality in the different local regions.


Sign in / Sign up

Export Citation Format

Share Document