Weakening Trend in the Atmospheric Heat Source over the Tibetan Plateau during Recent Decades. Part II: Connection with Climate Warming

2009 ◽  
Vol 22 (15) ◽  
pp. 4197-4212 ◽  
Author(s):  
Anmin Duan ◽  
Guoxiong Wu

Abstract In Part I the authors have shown that heating sources in spring over the Tibetan Plateau (TP), and in particular the sensible heat flux (SHF), exhibit a significant weakening trend since the mid-1980s that is induced mainly by decreased surface wind speed. The possible reason of such a change is further investigated in Part II by analyzing historical observations and the NCEP/Department of Energy (DOE) reanalysis. The steady declining trend in the surface wind speed over the TP after the 1970s arises mainly from the zonal component. Since the mean altitude of the TP is about 600 hPa and the surface flow is controlled by the East Asian subtropical westerly jet (EASWJ) for most parts of the year, the substantial tropospheric warming in the mid- and high latitudes to the north of the plateau results in a decrease of the meridional pressure gradient in the subtropics. As a result, the EASWJ and the surface winds over the TP are decelerated. Moreover, changes of the general circulation in the twentieth century simulated by 16 coupled climate models driven by natural and anthropogenic forcings are examined. Intercomparison results suggest that sulfate aerosol indirect effects and ozone may be important in reproducing the weakening trend in EASWJ. Although nearly half of the models can successfully reproduce the observed trends in the EASWJ during the last two decades, there is an obvious spread in simulation of the spatial patterns of twentieth-century tropospheric temperatures, suggesting significant room still exists for improvement of the current state-of-the-art coupled climate models.

2013 ◽  
Vol 26 (9) ◽  
pp. 2891-2903 ◽  
Author(s):  
Changgui Lin ◽  
Kun Yang ◽  
Jun Qin ◽  
Rong Fu

Abstract Previous studies indicated that surface wind speed over China declined during past decades, and several explanations exist in the literature. This study presents long-term (1960–2009) changes of both surface and upper-air wind speeds over China and addresses observed evidence to interpret these changes. It is found that surface wind over China underwent a three-phase change over the past 50 yr: (i) it step changed to a strong wind level at the end of the 1960s, (ii) it declined until the beginning of the 2000s, and (iii) it seemed to be steady and even recovering during the very recent years. The variability of surface wind speed is greater at higher elevations and less at lower elevations. In particular, surface wind speed over the elevated Tibetan Plateau has changed more significantly. Changes in upper-air wind speed observed from rawinsonde are similar to surface wind changes. The NCEP–NCAR reanalysis indicates that wind speed changes correspond to changes in geopotential height gradient at 500 hPa. The latter are further correlated with the changes of latitudinal surface temperature gradient, with a correlation coefficient of 0.88 for the past 50 yr over China. This strongly suggests that the spatial gradient of surface global warming or cooling may significantly change surface wind speed at a regional scale through atmospheric thermal adaption. The recovery of wind speed since the beginning of the 2000s over the Tibetan Plateau might be a precursor of the reversal of wind speed trends over China, as wind over high elevations can respond more rapidly to the warming gradient and atmospheric circulation adjustment.


2013 ◽  
Vol 34 (6) ◽  
pp. 1873-1882 ◽  
Author(s):  
Qinglong You ◽  
Klaus Fraedrich ◽  
Jinzhong Min ◽  
Shichang Kang ◽  
Xiuhua Zhu ◽  
...  

2016 ◽  
Vol 29 (3) ◽  
pp. 1219-1230 ◽  
Author(s):  
Yunying Li ◽  
Minghua Zhang

Abstract Cumulus (Cu) can transport heat and water vapor from the boundary layer to the free atmosphere, leading to the redistribution of heat and moist energy in the lower atmosphere. This paper uses the fine-resolution CloudSat–CALIPSO product to characterize Cu over the Tibetan Plateau (TP). It is found that Cu is one of the dominant cloud types over the TP in the northern summer. The Cu event frequency, defined as Cu occurring within 50-km segments, is 54% over the TP in the summer, which is much larger over the TP than in its surrounding regions. The surface wind vector converging at the central TP and the topographic forcing provide the necessary moisture and dynamical lifting of convection over the TP. The structure of the atmospheric moist static energy shows that the thermodynamical environment over the northern TP can be characterized as having weak instability, a shallow layer of instability, and lower altitudes for the level of free convection. The diurnal variation of Cu with frequency peaks during the daytime confirms the surface thermodynamic control on Cu formation over the TP. This study offers insights into how surface heat is transported to the free troposphere over the TP and provides an observational test of climate models in simulating shallow convection over the TP.


2020 ◽  
Vol 101-102 (3-4) ◽  
pp. 26-32
Author(s):  
Ellina Agayar ◽  
Ali Saleh Abudawah

The surface wind field are formed by the interaction of general circulation mechanisms with the local physical, geographical and climatic characteristics of the region. The success of the implementation of the different weather models is based on the representativeness of the initial information. The paper presents the results of comparing meteorological data, such as the average monthly speed and direction of the surface wind, from the NCEP / NCAR reanalysis archive with data of surface weather observations for the period from 2015 to 2019. Considering the difficulty of obtaining data, the absence of continuous observations at many meteorological stations in Libya, it was decided to analyze the most complete series of observations for the last period and compare it with the model data of reanalysis. Meteorological stations are located in different geographic regions of Libya (Derna, Zuara, Efren, Misurata, Godames, Jagbub, El-Kufra and Ghat). Based on the monthly average values of the surface wind velocity components for past five years, was done a study of the intrannual structure of the wind field over the territory of Libya and maps of the wind field for this period were constructed. The obtained results of comparison of the NCEP / NCAR reanalysis data with Surface weather observations showed a relatively good agreement between the observed and calculated wind. Noted that the wind, according to NCEP data, is some weaker than observed at the stations. The main reasons for this are the complexity and diversity of the topography around the stations, as well as the representativeness between gridded data and meteorological measurements. Analysis of the distribution of the average monthly wind speed over the territory of Libya indicates a tendency for an increase in the surface wind speed from the southwest to the northeast, both as according to the NCEP / NCAR reanalysis data, where the average wind speed doesn’t exceed 4.7 m/s, and according to actual observations 6.7 m/s.


Author(s):  
Yanhong Gao ◽  
Deliang Chen

The modeling of climate over the Tibetan Plateau (TP) started with the introduction of Global Climate Models (GCMs) in the 1950s. Since then, GCMs have been developed to simulate atmospheric dynamics and eventually the climate system. As the highest and widest international plateau, the strong orographic forcing caused by the TP and its impact on general circulation rather than regional climate was initially the focus. Later, with growing awareness of the incapability of GCMs to depict regional or local-scale atmospheric processes over the heterogeneous ground, coupled with the importance of this information for local decision-making, regional climate models (RCMs) were established in the 1970s. Dynamic and thermodynamic influences of the TP on the East and South Asia summer monsoon have since been widely investigated by model. Besides the heterogeneity in topography, impacts of land cover heterogeneity and change on regional climate were widely modeled through sensitivity experiments.In recent decades, the TP has experienced a greater warming than the global average and those for similar latitudes. GCMs project a global pattern where the wet gets wetter and the dry gets drier. The climate regime over the TP covers the extreme arid regions from the northwest to the semi-humid region in the southeast. The increased warming over the TP compared to the global average raises a number of questions. What are the regional dryness/wetness changes over the TP? What is the mechanism of the responses of regional changes to global warming? To answer these questions, several dynamical downscaling models (DDMs) using RCMs focusing on the TP have recently been conducted and high-resolution data sets generated. All DDM studies demonstrated that this process-based approach, despite its limitations, can improve understandings of the processes that lead to precipitation on the TP. Observation and global land data assimilation systems both present more wetting in the northwestern arid/semi-arid regions than the southeastern humid/semi-humid regions. The DDM was found to better capture the observed elevation dependent warming over the TP. In addition, the long-term high-resolution climate simulation was found to better capture the spatial pattern of precipitation and P-E (precipitation minus evapotranspiration) changes than the best available global reanalysis. This facilitates new and substantial findings regarding the role of dynamical, thermodynamics, and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The DDM was found to add value regarding snowfall retrieval, precipitation frequency, and orographic precipitation.Although these advantages in the DDM over the TP are evidenced, there are unavoidable facts to be aware of. Firstly, there are still many discrepancies that exist in the up-to-date models. Any uncertainty in the model’s physics or in the land information from remote sensing and the forcing could result in uncertainties in simulation results. Secondly, the question remains of what is the appropriate resolution for resolving the TP’s heterogeneity. Thirdly, it is a challenge to include human activities in the climate models, although this is deemed necessary for future earth science. All-embracing further efforts are expected to improve regional climate models over the TP.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sujay Kulkarni ◽  
Huei-Ping Huang

The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5) archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models projected decreases in the wind speed ranging from 5 to 10 percent per century over the same coastal regions. These projected changes in the surface wind speed are moderate and imply that the current estimate of wind power potential for North America based on present-day climatology will not be significantly changed by the greenhouse gas forcing in the coming decades.


2007 ◽  
Vol 64 (2) ◽  
pp. 401-420 ◽  
Author(s):  
Qingfang Jiang ◽  
James D. Doyle ◽  
Shouping Wang ◽  
Ronald B. Smith

Abstract The onset of boundary layer separation (BLS) forced by gravity waves in the lee of mesoscale topography is investigated based on a series of numerical simulations and analytical formulations. It is demonstrated that BLS forced by trapped waves is governed by a normalized ratio of the vertical velocity maximum to the surface wind speed; other factors such as the mountain height, mountain slope, or the leeside speedup factor are less relevant. The onset of BLS is sensitive to the surface sensible heat flux—a positive heat flux tends to increase the surface wind speed through enhancing the vertical momentum mixing and accordingly inhibits the occurrence of BLS, and a negative heat flux does the opposite. The wave forcing required to cause BLS decreases with an increase of the aerodynamical roughness zo; a larger zo generates larger surface stress and weaker surface winds and therefore promotes BLS. In addition, BLS shows some sensitivity to the terrain geometry, which modulates the wave characteristics. For a wider ridge, a higher mountain is required to generate trapped waves with a wave amplitude comparable to that generated by a lower but narrower ridge. The stronger hydrostatic waves associated with the wider and higher ridge play only a minor role in the onset of BLS. It has been demonstrated that although hydrostatic waves generally do not directly induce BLS, undular bores may form associated with wave breaking in the lower troposphere, which in turn induce BLS. In addition, BLS could occur underneath undular jump heads or associate with trapped waves downstream of a jump head in the presence of a low-level inversion.


2013 ◽  
Vol 52 (12) ◽  
pp. 2638-2653 ◽  
Author(s):  
Fong Ngan ◽  
Hyuncheol Kim ◽  
Pius Lee ◽  
Khalid Al-Wali ◽  
Bright Dornblaser

AbstractThe overprediction of surface wind speed during nighttime by the Advanced Research core of the Weather Research and Forecasting (WRF-ARW) model was investigated for a period of the Second Texas Air Quality Study (28 May–3 July 2006). In coastal regions of southeastern Texas, the model had a significant increase of wind speed biases on the surface in the evening throughout the period, especially between 4 and 12 June. The synoptic pattern was a high pressure system centered over the Louisiana–Mississippi area that was subjected to a weak easterly–southeasterly flow in the lower troposphere. The weather conditions favorable for sea-breeze development brought a southerly–southwesterly onshore flow to the near-surface levels. In comparison with measurements, the downward sensible heat flux was overpredicted at night, which resulted in a warm bias in surface temperature. For the vertical wind profile on days with an evening wind bias, sea-breeze-driven nocturnal low-level jets (southerly–southwesterly) were present at around 300 m while another wind maximum was observed at higher levels (around 1.5–2 km), which were associated with a high pressure system centered on southeastern states. The vertical gradient of wind speed in the lowest 150 m was smoother in the model than it was in the observations; this could be attributed to excessive downward mixing. Sensitivities using different land surface and PBL parameterizations showed that the model's overprediction of nocturnal wind was still present despite improvements in the predictions of surface temperature and sensible heat flux.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 112 ◽  
Author(s):  
Yufei Zhao ◽  
Jianping Li ◽  
Qiang Zhang ◽  
Xiaowei Jiang ◽  
Aixia Feng

This study uses hourly surface wind direction and wind speed observations from 53 meteorological stations on the Tibetan Plateau (TP) (70–105° E, 25–45° N) between 1995 and 2017 to investigate diurnal variations in the surface wind. The results show large diurnal variations in surface wind on the TP. The minimum wind speed occurs in the morning and the maximum in the afternoon. In all four seasons, the prevailing meridional wind is a southerly, and this is typically evident for more than two-thirds of each day. However, in the mornings during December–February and September–November, this southerly wind is replaced by a northerly, but remains southerly in the afternoon. The TP shows remarkable regional characteristics with respect to diurnal variations in wind speed. In the eastern region, the minimum and maximum daily wind speeds occur about 1 h later than in the west. Among the 53 meteorological stations, 79% observed that it took less time for the minimum speed to rise to the maximum speed than for the maximum to drop to the minimum. The blocking effect of the high surrounding terrain causes the diurnal variations seen in the surface winds at the three stations in the Qaidam Basin to differ significantly from those observed at the other stations elsewhere on the plateau. These Qaidam Basin stations recorded their maximum wind speeds around noon, with the minimum at dusk, which is around 1900 LST. The EOF1 (EOF = empirical orthogonal function) of the hourly wind speed on the TP indicates the key daily circulation feature of the region; i.e., the wind speed is high in the afternoon and low in the morning. The EOF2 reflects the regional differences in the diurnal variations of wind speed on the TP; i.e., the eastern region reaches the daily maximum and minimum wind speeds slightly later than the western region.


Sign in / Sign up

Export Citation Format

Share Document