Observed Coherent Trends of Surface and Upper-Air Wind Speed over China since 1960

2013 ◽  
Vol 26 (9) ◽  
pp. 2891-2903 ◽  
Author(s):  
Changgui Lin ◽  
Kun Yang ◽  
Jun Qin ◽  
Rong Fu

Abstract Previous studies indicated that surface wind speed over China declined during past decades, and several explanations exist in the literature. This study presents long-term (1960–2009) changes of both surface and upper-air wind speeds over China and addresses observed evidence to interpret these changes. It is found that surface wind over China underwent a three-phase change over the past 50 yr: (i) it step changed to a strong wind level at the end of the 1960s, (ii) it declined until the beginning of the 2000s, and (iii) it seemed to be steady and even recovering during the very recent years. The variability of surface wind speed is greater at higher elevations and less at lower elevations. In particular, surface wind speed over the elevated Tibetan Plateau has changed more significantly. Changes in upper-air wind speed observed from rawinsonde are similar to surface wind changes. The NCEP–NCAR reanalysis indicates that wind speed changes correspond to changes in geopotential height gradient at 500 hPa. The latter are further correlated with the changes of latitudinal surface temperature gradient, with a correlation coefficient of 0.88 for the past 50 yr over China. This strongly suggests that the spatial gradient of surface global warming or cooling may significantly change surface wind speed at a regional scale through atmospheric thermal adaption. The recovery of wind speed since the beginning of the 2000s over the Tibetan Plateau might be a precursor of the reversal of wind speed trends over China, as wind over high elevations can respond more rapidly to the warming gradient and atmospheric circulation adjustment.

2009 ◽  
Vol 22 (15) ◽  
pp. 4197-4212 ◽  
Author(s):  
Anmin Duan ◽  
Guoxiong Wu

Abstract In Part I the authors have shown that heating sources in spring over the Tibetan Plateau (TP), and in particular the sensible heat flux (SHF), exhibit a significant weakening trend since the mid-1980s that is induced mainly by decreased surface wind speed. The possible reason of such a change is further investigated in Part II by analyzing historical observations and the NCEP/Department of Energy (DOE) reanalysis. The steady declining trend in the surface wind speed over the TP after the 1970s arises mainly from the zonal component. Since the mean altitude of the TP is about 600 hPa and the surface flow is controlled by the East Asian subtropical westerly jet (EASWJ) for most parts of the year, the substantial tropospheric warming in the mid- and high latitudes to the north of the plateau results in a decrease of the meridional pressure gradient in the subtropics. As a result, the EASWJ and the surface winds over the TP are decelerated. Moreover, changes of the general circulation in the twentieth century simulated by 16 coupled climate models driven by natural and anthropogenic forcings are examined. Intercomparison results suggest that sulfate aerosol indirect effects and ozone may be important in reproducing the weakening trend in EASWJ. Although nearly half of the models can successfully reproduce the observed trends in the EASWJ during the last two decades, there is an obvious spread in simulation of the spatial patterns of twentieth-century tropospheric temperatures, suggesting significant room still exists for improvement of the current state-of-the-art coupled climate models.


2020 ◽  
Vol 33 (10) ◽  
pp. 3989-4008 ◽  
Author(s):  
Zhengtai Zhang ◽  
Kaicun Wang

AbstractSurface wind speed (SWS) from meteorological observation, global atmospheric reanalysis, and geostrophic wind speed (GWS) calculated from surface pressure were used to study the stilling and recovery of SWS over China from 1960 to 2017. China experienced anemometer changes and automatic observation transitions in approximately 1969 and 2004, resulting in SWS inhomogeneity. Therefore, we divided the entire period into three sections to study the SWS trend, and found a near-zero annual trend in the SWS in China from 1960 to 1969, a significant decrease of −0.24 m s−1 decade−1 from 1970 to 2004, and a weak recovery from 2005 to 2017. By defining the 95th and 5th percentiles of daily mean wind speeds as strong and weak winds, respectively, we found that the SWS decrease was primarily caused by a strong wind decrease of −8% decade−1 from 1960 to 2017, but weak wind showed an insignificant decreasing trend of −2% decade−1. GWS decreased with a significant trend of −3% decade−1 before the 1990s; during the 1990s, GWS increased with a trend of 3% decade−1 whereas SWS continued to decrease with a trend of 10% decade−1. Consistent with SWS, GWS demonstrated a weak increase after the 2000s. After detrending, both SWS and GWS showed synchronous decadal variability, which is related to the intensity of Aleutian low pressure over the North Pacific. However, current reanalyses cannot reproduce the decadal variability and cannot capture the decreasing trend of SWS either.


2020 ◽  
Author(s):  
Zhengtai Zhang ◽  
Kaicun Wang

<p>Surface wind speed (SWS) from meteorological observation, global atmospheric reanalysis, and geostrophic wind speed (GWS) calculated from surface pressure were used to study the stilling and recovery of SWS over China from 1960 to 2017. China experienced anemometer changes and automatic observation transitions in approximately 1969 and 2004, resulting in SWS inhomogeneity. Therefore, we divided the entire period into three sections to study the SWS trend, and found a near zero annual trend in the SWS in China from 1960 to 1969, a significant decrease of -0.24 m/s decade<sup>-1 </sup>from 1970 to 2004, and a weak recovery from 2005 to 2017. By defining the 95<sup>th</sup> and 5<sup>th</sup> percentiles of monthly mean wind speeds as strong and weak winds, respectively, we found that the SWS decrease was primarily caused by a strong wind decrease of -8 % decade<sup>-1</sup> from 1960 to 2017, but weak wind showed an insignificant decreasing trend of -2 % decade<sup>-1</sup>. GWS decreased with a significant trend of -3 % decade<sup>-1 </sup>before the 1990s, during the 1990s, GWS increased with a trend of 3 % decade<sup>-1 </sup>whereas SWS continued to decrease with a trend of 10 % decade<sup>-1</sup>. Consistent with SWS, GWS demonstrated a weak increase after the 2000s. After detrended, both of SWS and GWS showed synchronous decadal variability, which is related to the intensity of Aleutian low pressure over the North Pacific. However, current reanalyses cannot reproduce the decadal variability, and can not capture the decreasing trend of SWS either.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 112 ◽  
Author(s):  
Yufei Zhao ◽  
Jianping Li ◽  
Qiang Zhang ◽  
Xiaowei Jiang ◽  
Aixia Feng

This study uses hourly surface wind direction and wind speed observations from 53 meteorological stations on the Tibetan Plateau (TP) (70–105° E, 25–45° N) between 1995 and 2017 to investigate diurnal variations in the surface wind. The results show large diurnal variations in surface wind on the TP. The minimum wind speed occurs in the morning and the maximum in the afternoon. In all four seasons, the prevailing meridional wind is a southerly, and this is typically evident for more than two-thirds of each day. However, in the mornings during December–February and September–November, this southerly wind is replaced by a northerly, but remains southerly in the afternoon. The TP shows remarkable regional characteristics with respect to diurnal variations in wind speed. In the eastern region, the minimum and maximum daily wind speeds occur about 1 h later than in the west. Among the 53 meteorological stations, 79% observed that it took less time for the minimum speed to rise to the maximum speed than for the maximum to drop to the minimum. The blocking effect of the high surrounding terrain causes the diurnal variations seen in the surface winds at the three stations in the Qaidam Basin to differ significantly from those observed at the other stations elsewhere on the plateau. These Qaidam Basin stations recorded their maximum wind speeds around noon, with the minimum at dusk, which is around 1900 LST. The EOF1 (EOF = empirical orthogonal function) of the hourly wind speed on the TP indicates the key daily circulation feature of the region; i.e., the wind speed is high in the afternoon and low in the morning. The EOF2 reflects the regional differences in the diurnal variations of wind speed on the TP; i.e., the eastern region reaches the daily maximum and minimum wind speeds slightly later than the western region.


2020 ◽  
Vol 33 (10) ◽  
pp. 4027-4043 ◽  
Author(s):  
Xu Dong ◽  
Yetang Wang ◽  
Shugui Hou ◽  
Minghu Ding ◽  
Baoling Yin ◽  
...  

AbstractNear-surface wind speed observations from 30 manned meteorological stations and 26 automatic weather stations over the Antarctic Ice Sheet are used to examine the robustness of wind speed climatology in six recent global reanalysis products: the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), the Japan Meteorological Agency 55-Year Reanalysis (JRA-55), the Climate Forecast System Reanalysis (CFSR), the National Centers for Environmental Prediction–U.S. Department of Energy (DOE) Reanalysis 2 (NCEP2), and the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and fifth-generation reanalysis (ERA5). Their skills for representing near-surface wind speeds vary by season, with better performance in summer than in winter. At the regional scale, all reanalysis datasets perform more poorly for the magnitude, but better for their year-to-year changes in wind regimes in the escarpment than the coastal and plateau regions. By comparison, ERA5 has the best performance for the monthly averaged wind speed magnitude and the interannual variability of the near-surface wind speed from 1979 onward. Intercomparison exhibits high and significant correlations for annual and seasonal wind speed Antarctic-wide averages from different datasets during their overlapping timespans (1980–2018), despite some regional disagreements between the different reanalyses. Furthermore, all of the reanalyses show positive trends of the annual and summer wind speeds for the 1980–2018 period, which are linked with positive polarity of the southern annular mode.


2021 ◽  
Author(s):  
Xia Li ◽  
Yongjie Pan ◽  
Yingsha Jiang

Abstract Near-surface wind speed is of great significance in many aspects of the human production and living. This study analyses the spatiotemporal characteristics of the near-surface wind speed and wind speed percentiles with meteorological station observations in China from 1979 to 2019. Furthermore, the mechanisms of the wind speed variations are also investigated with ERA-Interim reanalysis dataset. Spatially, the wind speeds in the northern and eastern regions of China are larger than that in the central and southern regions. Seasonally, the wind speed in spring is significantly larger than that in the other seasons. The dispersion degree of wind speed in spring is larger than that in the other seasons both spatially and temporally. The near-surface wind speed in China shows significantly decreasing trends during 1979–2019, particularly in 1979–1999, but the wind speed trend reversed after 2000. After dividing the wind speed into different percentiles, it recognizes that the decreasing trend of stronger winds are more significant than that of weaker winds. The weaker the wind speed, the more significant increasing trend after 2000. Therefore, the decreasing wind speed trend before 2000 is mainly caused by the significant reduction of strong wind, while the reversal trend after 2000 results from the increase of weak wind. The variations of the wind speed over China attributed to both the U and V wind components, and the variations of zonal wind is closely related to the weakened upper westerly wind field and the uneven warming between high and low latitudes.


2013 ◽  
Vol 34 (6) ◽  
pp. 1873-1882 ◽  
Author(s):  
Qinglong You ◽  
Klaus Fraedrich ◽  
Jinzhong Min ◽  
Shichang Kang ◽  
Xiuhua Zhu ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 2034 ◽  
Author(s):  
Hongsu Liu ◽  
Shuanggen Jin ◽  
Qingyun Yan

Ocean surface wind speed is an essential parameter for typhoon monitoring and forecasting. However, traditional satellite and buoy observations are difficult to monitor the typhoon due to high cost and low temporal-spatial resolution. With the development of spaceborne GNSS-R technology, the cyclone global navigation satellite system (CYGNSS) with eight satellites in low-earth orbit provides an opportunity to measure the ocean surface wind speed of typhoons. Though observations are made at the extremely efficient spatial and temporal resolution, its accuracy and reliability are unclear in an actual super typhoon case. In this study, the wind speed variations over the life cycle of the 2018 Typhoon Mangkhut from CYGNSS observations were evaluated and compared with European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-5 (ERA-5). The results show that the overall root-mean-square error (RMSE) of CYGNSS versus ECMWF was 4.12 m/s, the mean error was 1.36 m/s, and the correlation coefficient was 0.96. For wind speeds lower and greater than 15 m/s, the RMSE of CYGNSS versus ECMWF were 1.02 and 4.36 m/s, the mean errors were 0.05 and 1.61 m/s, the correlation coefficients were 0.91 and 0.90, and the average relative errors were 9.8% and 11.6%, respectively. When the typhoon reached a strong typhoon or super typhoon, the RMSE of CYGNSS with respect to ERA-5 from ECMWF was 5.07 m/s; the mean error was 3.57 m/s; the correlation coefficient was 0.52 and the average relative error was 11.0%. The CYGNSS estimation had higher precision for wind speeds below 15 m/s, but degraded when the wind speed was above 15 m/s.


2010 ◽  
Vol 23 (2) ◽  
pp. 255-281 ◽  
Author(s):  
Larry W. O’Neill ◽  
Dudley B. Chelton ◽  
Steven K. Esbensen

Abstract The effects of surface wind speed and direction gradients on midlatitude surface vorticity and divergence fields associated with mesoscale sea surface temperature (SST) variability having spatial scales of 100–1000 km are investigated using vector wind observations from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite and SST from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) Aqua satellite. The wind–SST coupling is analyzed over the period June 2002–August 2008, corresponding to the first 6+ years of the AMSR-E mission. Previous studies have shown that strong wind speed gradients develop in response to persistent mesoscale SST features associated with the Kuroshio Extension, Gulf Stream, South Atlantic, and Agulhas Return Current regions. Midlatitude SST fronts also significantly modify surface wind direction; the surface wind speed and direction responses to typical SST differences of about 2°–4°C are, on average, about 1–2 m s−1 and 4°–8°, respectively, over all four regions. Wind speed perturbations are positively correlated and very nearly collocated spatially with the SST perturbations. Wind direction perturbations, however, are displaced meridionally from the SST perturbations, with cyclonic flow poleward of warm SST and anticyclonic flow poleward of cool SST. Previous observational analyses have shown that small-scale perturbations in the surface vorticity and divergence fields are related linearly to the crosswind and downwind components of the SST gradient, respectively. When the vorticity and divergence fields are analyzed in curvilinear natural coordinates, the wind speed contributions to the SST-induced vorticity and divergence depend equally on the crosswind and downwind SST gradients, respectively. SST-induced wind direction gradients also significantly modify the vorticity and divergence fields, weakening the vorticity response to crosswind SST gradients while enhancing the divergence response to downwind SST gradients.


Sign in / Sign up

Export Citation Format

Share Document